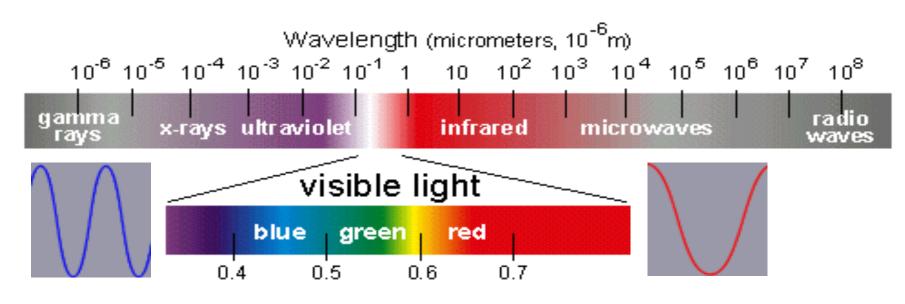

LA VALUTAZIONE DEI RISCHI DA RADIAZIONI OTTICHE: METODI, CASI STUDIO, CRITICITA'


Dott.ssa Iole Pinto

A.U.S.L. Toscana Sud Est
Laboratorio di Sanità Pubblica Siena
Laboratorio Agenti Fisici
Centro LAT Acustica n.164
Iole.pinto@uslsudest.toscana.it

Radiazioni Ottiche



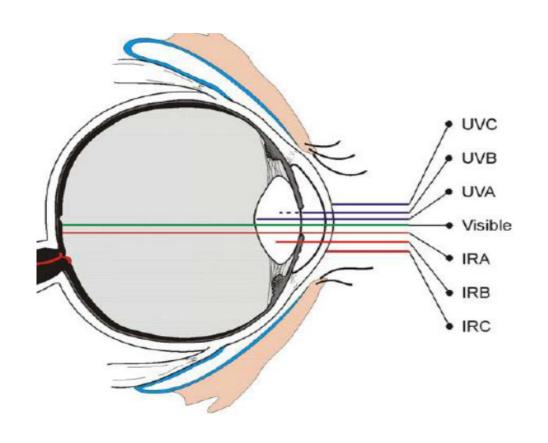
Radiazioni Ottiche

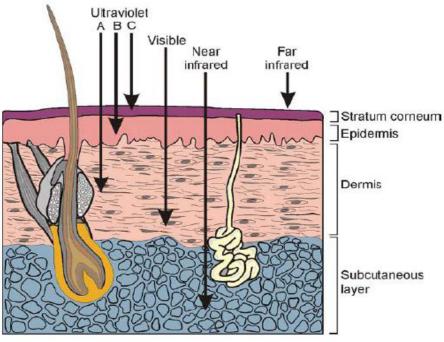
Naturali

Artificiali

Coerenti (LASER)

Incoerenti





Organi bersaglio Radiazioni Ottiche: occhi e cute

Un rischio noto e ancora sottovalutato

D E

MORBIS ARTIFICUM

DIATRIBA

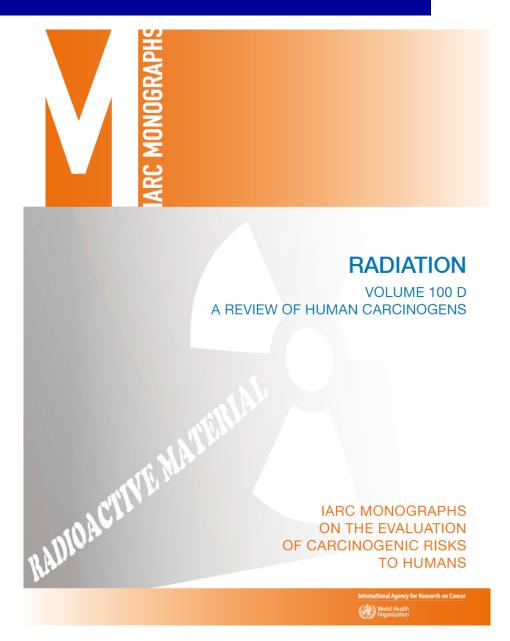
BERNARDINI RAMAZZINI

IN PATAVINO ARCHI-LYCEO

Practicæ Medicinæ Ordinariæ

Publici Professorum collegæ.

1700...Ramazzini
I vetrai ..."Affrontano
direttamente l'impeto del fuoco e
spesso piangono la loro disgrazia
con un'acuta infiammazione e si
indeboliscono perché i loro umori
naturali, che sono acquosi,
vengono riseccati e consumati
dall'eccessivo calore".



Ferrannini inizi '900
"è questa la sindrome
dell'oftalmia elettrica, che si
ha negli operai che saldano o
fondono metalli con
l'elettricità".

LE VALUTAZIONI DI CANCEROGENICITA' RUV – LA IARC

Le Monografie dal 1979 ...

INTERNATIONAL AGENCY FOR RESEARCH ON CANCER WORLD HEALTH ORGANIZATION **IARC MONOGRAPHS** ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS **VOLUME 55** SOLAR AND ULTRAVIOLET RADIATION 1992 YON FRANCE

2012

1992

SOLAR AND ULTRAVIOLET RADIATION

Solar and ultraviolet radiation were considered by a previous IARC Working Group in 1992 (IARC, 1992). Since that time, new data have become available, these have been incorporated into the *Monograph*, and taken into consideration in the present evaluation.

5. Evaluation

There is *sufficient evidence* in humans for the carcinogenicity of solar radiation. Solar radiation causes cutaneous malignant melanoma, squamous cell carcinoma of the skin and basal cell carcinoma of the skin. A positive association has been observed between exposure to solar radiation and cancer of the lip, conjunctival squamous cell carcinoma and ocular melanoma, based primarily on results observed in the choroid and the ciliary body of the eye.

There is *sufficient evidence* in humans for the carcinogenicity of the use of UV-emitting tanning devices. UV-emitting tanning devices cause cutaneous malignant melanoma and ocular melanoma (observed in the choroid and the ciliary body of the eye). A positive association has been observed between the use of UV-emitting tanning devices and squamous cell carcinoma of the skin.

There is *sufficient evidence* in humans for the carcinogenicity of welding. Current evidence establishes a causal association for ocular melanoma although it is not possible without a full review of welding to attribute the occurrence of ocular melanoma to UV radiation specifically.

There is *sufficient evidence* in experimental animals for the carcinogenicity of solar radiation, broad-spectrum UVR, UVA radiation, UVB radiation, UVC radiation.

There is *sufficient evidence* in experimental animals for the carcinogenicity of solar radiation, broad-spectrum UVR, UVA radiation, UVB radiation, UVC radiation.

Solar radiation is carcinogenic to humans (Group 1).

Use of UV-emitting tanning devices is carcinogenic to humans (Group 1).

Ultraviolet radiation (bandwidth 100–400 nm, encompassing UVC, UVB and UVA) is carcinogenic to humans (Group 1).

Principali effetti dannosi della radiazione ottica sull'occhio e la pelle

Lunghezza d' onda (nm)	Tipo	Occhio		Pelle	
100 - 280	UV C - Ultravioletto C	fotocheratite	Eritema (scottatura della	Tumori cutanei Processo accelerato di	
280 - 315	UV B - Ultravioletto B	Foto congiuntivite	pelle)	invecchiamento della pelle GRUPPO 1A IARC	
315 - 400	UV A - Ultravioletto A	cataratta fotochimica	Reazione di foto	CANCEROGENO CERTO	
400 – 780	Visibile	lesione fotochimica e termica della retina	sensibilità		
780 - 1400	IR A - Infrarosso A	cataratta bruciatura della retina		Bruciatura della pelle	
1400 - 3000	IR B - Infrarosso B	cataratta, bruciatura della cornea			
3000 - 106	IR C - Infrarosso C	bruciatura della cornea		8	

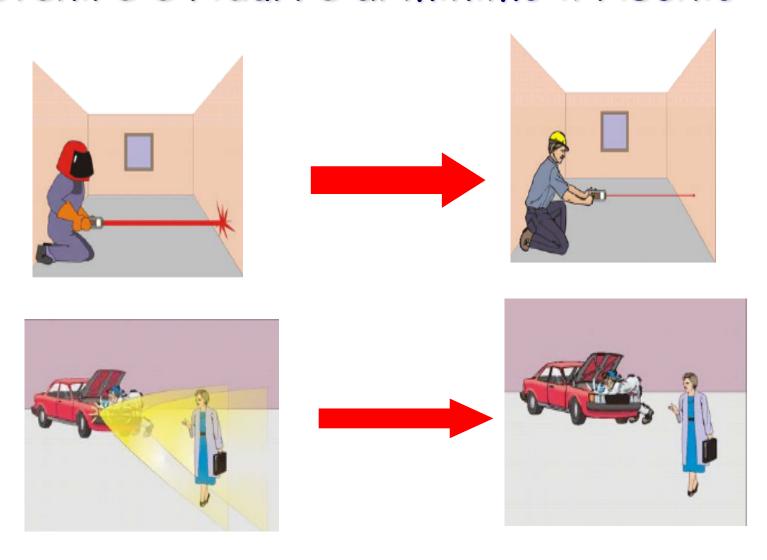
Agenti fisici

Decreto Legislativo 9 Aprile 2008 n. 81 TITOLO

VIII

- Rumore (capo II)
- Vibrazioni (capo III)
- Campi elettromagn.(statico/RF/M.O) (IV)
- Radiazioni Ottiche ARTIFICIALI (capo V)
- Ultrasuoni, Infrasuoni
- Microclima
- Atmosfere iperbariche

D.M. 9 aprile 2008 n. 81 Titolo VIII "Agenti Fisici"


Articolo 181

Valutazione dei rischi
in modo da identificare e adottare le opportune
misure di prevenzione e protezione con
particolare riferimento alle norme di buona
tecnica ed alle buone prassi

Comma 3

Il datore di lavoro nella valutazione dei rischi precisa quali misure di prevenzione e protezione devono essere adottate

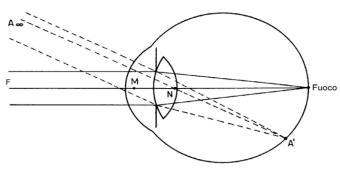
Obiettivo della valutazione: Prevenire e ridurre al minimo il rischio

D.Lgvo 81/2008 Titolo VIII Capo V Art. 207. **Definizioni**

e)valori limite di esposizione: limiti di esposizione alle radiazioni ottiche che sono basati direttamente sugli effetti sulla salute accertati e su considerazioni biologiche. Il rispetto di questi limiti garantisce che i lavoratori esposti a sorgenti artificiali di radiazioni ottiche siano protetti contro tutti gli effetti nocivi sugli occhi e sulla cute conosciuti

I valori limite sono espressi in termini di IRRADIANZA e di RADIANZA

La radianza è la grandezza attraverso cui si caratterizza l'esposizione della retina, pertanto verrà misurata per determinare il livello di esposizione delle radiazioni che possono essere focalizzate dal cristallino sulla retina, ovvero quelle di lunghezza d'onda compresa nell'intervallo spettrale VIS-IRA.


UV IRB e IRC

PELLE CORNEA CRISTALLINO

IRRADIANZA

VISIBILE e IRA

RADIANZA

Valori Efficaci: Heff (J/m2) 3 curve di ponderazione

S (λ) Ultravioletto

R (λ) Visibile – IR (danno retinico)

B (λ) Luce Blu: danno fotochimico

S (λ)

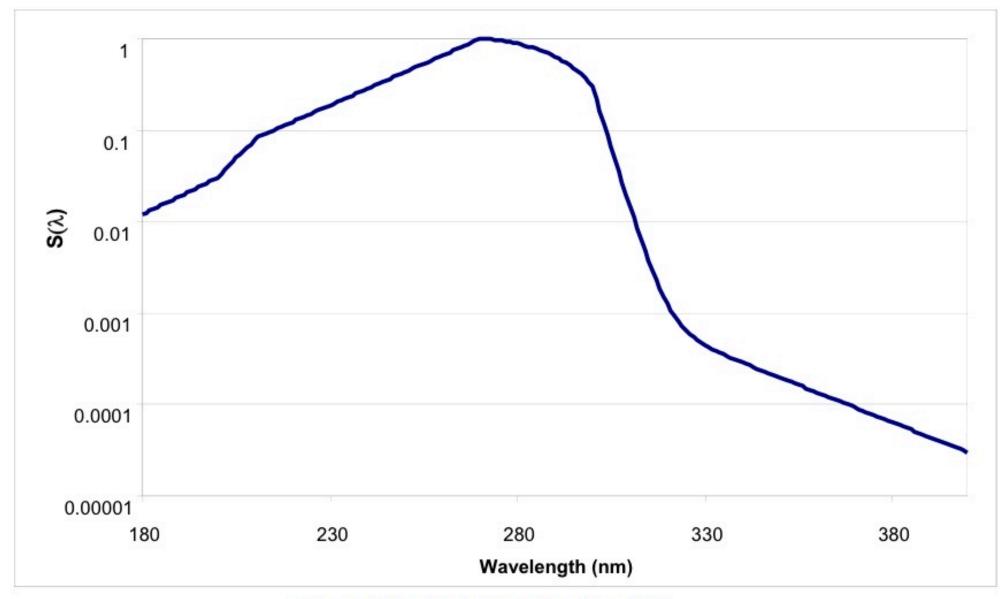


Figure 5.1 – Weighting function $S(\lambda)$

B (λ)

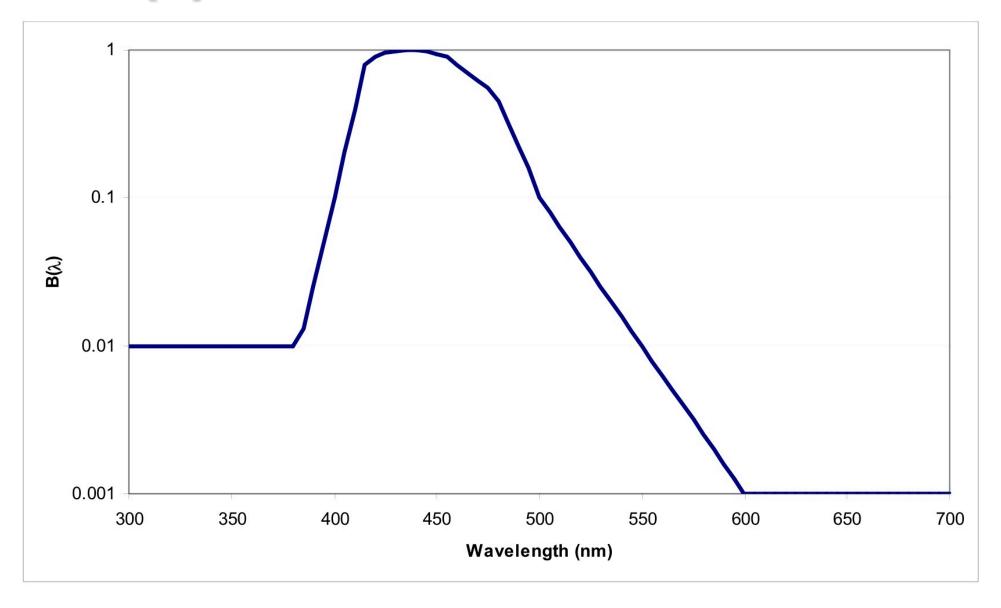


Figure 5.2 – Weighting function $B(\lambda)$

$R(\lambda)$

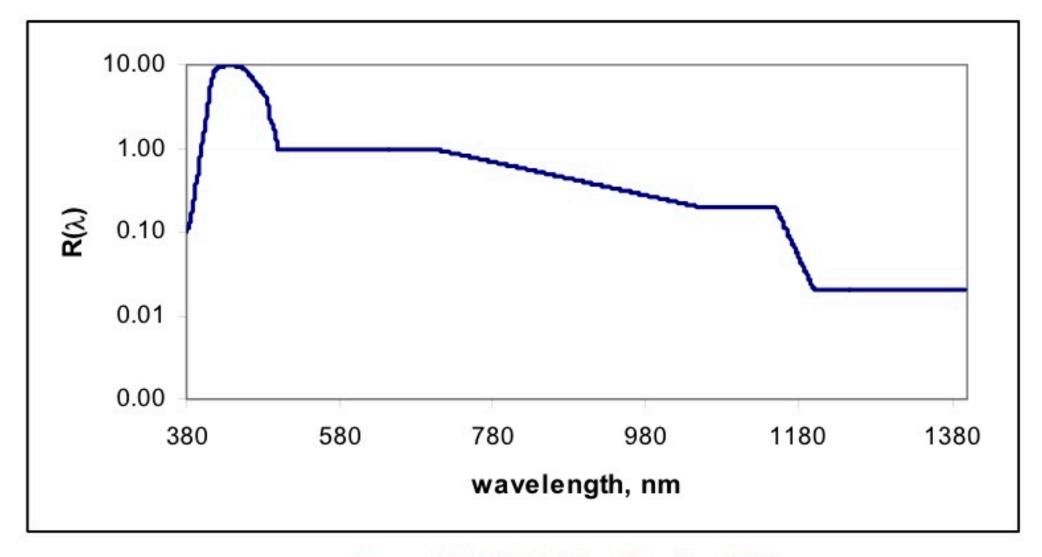


Figure 5.3 – Weighting function $R(\lambda)$

13 diversi valori limite in relazione alla prevenzione dei differenti effetti su occhio e cute

Valore limite	Tipo	Occhio	Pelle		
J/m2 (a)	UV C - Ultravioletto C	fotocheratite	Eritema	Tumori cutanei	
J/m2 (a)	UV B - Ultravioletto B	Foto congiuntivite	(scottatura della pelle)	Processo accelerato di invecchiamento della	
J/m2 (a, b)	UV A - Ultravioletto A	cataratta fotochimica	Reazione di foto	pelle	
d (W/m2/sr) e (W/m2) pb f (W/m2/) pl G-h-i-(w/m2/sr)	Visibile	lesione fotochimica e termica della retina	sensibilità		
J,k,l,m	IR A - Infrarosso A	cataratta bruciatura della retina		Bruciatura della pelle	
M,n,o (j/m2)	IR B - Infrarosso B	cataratta, bruciatura della cornea			
M,n,o (j/m2)	IR C - Infrarosso C	bruciatura della cornea			

Esempi di sorgenti non coerenti

	ESEMPI DI SORGENTI NON COERENTI* potenzialmente rischiose: richiedono valutazione specifica
IR	Riscaldatori radianti Forni di fusione metalli e vetro Lampade per riscaldamento a incandescenza, a scarica, ad arco Dispositivi militari per la visione notturna
VISIBILE	Sorgenti di illuminazione artificiale (lampade ad alogenuri metallici, al mercurio, sistemi LED gruppo 2) Lampade per uso medico (fototerapia neonatale e dermatologica) ed estetico Luce pulsata - IPL (Intense Pulsed Light) Saldatura
UV	Sterilizzazione Essiccazione inchiostri, vernici Fotoincisione Controlli difetti di fabbricazione Lampade per uso medico (es.: fototerapia dermatologica) e/o estetico Luce pulsata - IPL Saldatura ad arco/al laser
* Alcune dell	e sorgenti di cui sopra emettono anche nelle bande vicine

Art. 216. Identificazione dell'esposizione e valutazione dei rischi Il datore di lavoro valuta il rischio e, quando necessario, misura e/o calcola i livelli delle radiazioni ottiche a cui possono essere esposti i lavoratori.

Come valutare il rischio?

WWW.PORTALEAGENTIFISICI.IT

BANCHE DATI ROA

CALCOLATORI ON LINE PER
SALDATURA
SISTEMI DI LAMPADE LED- ALOGENURI
FUSIONE METALLI - VETRO
(IN PROGRESS)

Integrazione
tra valori
misurati e valori
calcolati da
modelli
previsionali

Tabella 1.1 Valori limite di esposizione per radiazioni UV

Indice	Lunghezza d'onda nm	Valori limite di esposizione	Unità	Parte del corpo	Rischio
a.	180-280 (UVC) 280-315 (UVB) 315-400 (UVA)	H _{eff} = 30 Valore giornaliero 8 ore	[J m ⁻²]	Occhi cornea Congiuntiva Cristallino Cute	fotocheratite congiuntivite catarattogenesi eritema elastosi tumore della cute
b.	315-400(UVA)	H _{UVA} = 10 ⁴ Valore giornaliero 8 ore	[J m ⁻²]	occhio: cristallino	catarattogenesi

Danno di tipo stocastico: mantenersi sotto il limite assicura solo una bassa probabilità di subire il danno

Esempio risultati sorgente UVC (germicida) in Banca Dati ROA PAF

Rif.D.lgs 81/08	INTERVALLO DELLO SPETTRO	ORGANI BERSAGLIO	RISULTATO	
a	E _S (Ultravioletto)	Occhi e cute	Non esente: maggiore del VLE	4.6 W m ⁻²
b	E _{UVA} (Ultravioletto A)	Occhi	da 20% ÷ 50% del limite	0.1 W m^{-2}
c,d	L _B (Luce blu, sorgente estesa)	Occhi	Irrilevante	
e,f	E _B (Luce blu, sorgente piccola)	Occhi	Non applicabile	
	L _{AFA} (Luce blu, sorgente estesa, afachici)	Occhi	Irrilevante	
	E _{AFA} (Luce blu, sorgente piccola, afachici)	Occhi	Non applicabile	
g,h,i	L _R (Visibile e Infrarosso A)	Occhi	Irrilevante	
j,k,l	L _R (Infrarosso A)	Occhi	Irrilevante	
m,n	E _{IR} (Infrarosso A + Infrarosso B)	Occhi	Irrilevante	
0	E _{skin} (Visibile + Infrarosso A + Infrarosso B)	Cute	Irrilevante	

Tmax =
$$\frac{30 \text{ J/m}^2}{4,6 \text{ W/m}^2}$$
 a) $H_{\text{eff}} = 30 \text{ J/m}^2$

RISCHI: Eritemale; Fotocheratite - Foto congiuntivite

20 cm

TEMPO DI ESPOSIZIONE MASSIMO

6 secondi

DISTANZA SENSORE SORGENTE

TUMORI CUTANEI (E OCULARI)

WWW.PORTALEAGENTIFISICI.IT Alla sessione ROA- DOCUMENTAZIONE DISPONIBILI procedure operative per il controllo del rischio

Valutazione del rischio da esposizione a radiazioni ottiche artificiali in fonderie e criteri di scelta dei DPI

Iole Pinto, Andrea Bogi, Nicola Stacchini, Francesco Picciolo Usl 7 Sena – Laboratorio Sanità Pubblica – Agenti Fisici

Valutazione del rischio da esposizione a radiazioni ottiche artificiali per i lavoratori e per il pubblico derivante dall'impiego di Riscaldatori ad Infrarossi

Iole Pinto, Andrea Bogi, Francesco Picciolo, Nicola Stacchini Usl 7 Sena – Laboratorio Sanità Pubblica – Agenti Fisici

Il rischio da Radiazioni Ottiche e Campi Elettromagnetici nelle strutture sanitarie

Iole Pinto, Andrea Bogi, Nicola Stacchini e Francesco Picciolo del Laboratorio Agenti Fisici della USL 7 di Siena



Procedure operative per la prevenzione del rischio da esposizione a Radiazioni Ottiche Artificiali: Cappe sterili e Lampade Germicide.

Iole Pinto; Andrea Bogi, Nicola Stacchini Laboratorio Agenti Fisici ASL 7 Siena

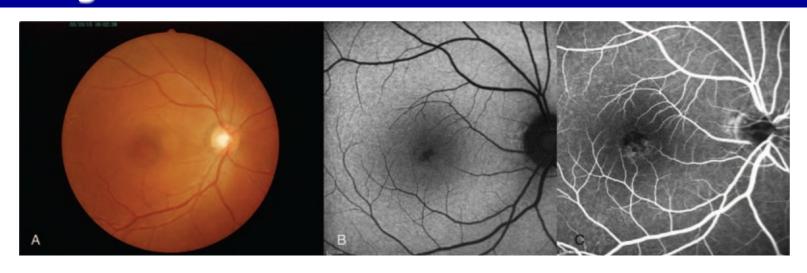
VALORI LIMITE IR D.lgvo 81/08 ALL. XXXVII lettere m); n): cataratta/bruciatura cornea

Nell'intervallo (780<λ<1400 nm) si valuta:

m.
$$E_{IR} = \frac{18000}{t^{0.75}}$$
 [W m⁻²]

Esempio risultati sorgente IR essiccatori ad infrarosso in Banca Dati ROA PAF

Rif.D.lgs 81/08	INTERVALLO DELLO SPETTRO	ORGANI BERSAGLIO	RISULTATO	Val.
a	E _S (Ultravioletto)	Occhi e cute	Irrilevante	
b	E _{UVA} (Ultravioletto A)	Occhi	Irrilevante	
c,d	L _B (Luce blu, sorgente estesa)	Occhi	Irrilevante	
e,f	E _B (Luce blu, sorgente piccola)	Occhi	Non applicabile	
	L _{AFA} (Luce blu, sorgente estesa, afachici)	Occhi	Irrilevante	
	E_{AFA} (Luce blu, sorgente piccola, afachici)	Occhi	Non applicabile	
g,h,i	L _R (Visibile e Infrarosso A)	Occhi	Irrilevante	
j,k,l	L _R (Infrarosso A)	Occhi	Irrilevante	
m,n	E _{IR} (Infrarosso A + Infrarosso B)	Occhi	Maggiore del VLE	530W m
0	E _{skin} (Visibile + Infrarosso A + Infrarosso B)	Cute	Irrilevante	530 W m



Tmax =
$$(\frac{18000 \text{ W/m}^2}{530 \text{ W/m}^2})^{1/0,75}$$

m) EIR = $18.000/(T^{0.75})$ T < 16 minuti

RISCHI: LUNGO TERMINE: cataratta del cristallino

Donna di 41 anni. Esposizione (~2h/dì per 2 mesi) a riscaldatore a IR al quarzo (800W; 220 W/m2; 180 lux) posto alla sua destra (a circa 70 cm), sul luogo di lavoro. Da 1 mese offuscamento e distorsione delle immagini con OD.

MACULOPATIA FOTOTOSSICA

*Phototoxic maculopathy induced by quartz infrared heat lamp A clinical case report Xinhua Zheng, et. Al Medicine (Baltimore). 2017 Jan "

La valutazione deve considerare

- a) il livello, la gamma di lunghezze d'onda e la durata dell'esposizione a sorgenti artificiali di radiazioni ottiche;
- b) i valori limite di esposizione di cui all'articolo 215;
- c) qualsiasi effetto sulla salute e sulla sicurezza dei lavoratori appartenenti a gruppi particolarmente sensibili al rischio;
- d) qualsiasi eventuale effetto sulla salute e sulla sicurezza dei lavoratori risultante dalle interazioni sul posto di lavoro tra le radiazioni ottiche e le sostanze chimiche fotosensibilizzanti;
- e) qualsiasi effetto indiretto come l'accecamento temporaneo, le esplosioni o il fuoco;

Soggetti particolarmente sensibili al rischio

- Donne in gravidanza
- Minorenni
- Albini e individui di fototipo 1 per esposizione a radiazioni UV
- Portatori di malattie del collagene per esposizioni a radiazioni UV
- Soggetti in trattamento cronico o ciclico con farmaci fotosensibilizzanti

quali ad esempio: antibiotici come le tetracicline ed i fluorochinolonici; antinfiammatori non steroidei come l'ibuprofene ed il naprossene; diuretici come la furosemide; ipoglicemizzanti come la sulfonilurea.

Soggetti particolarmente sensibili al rischio

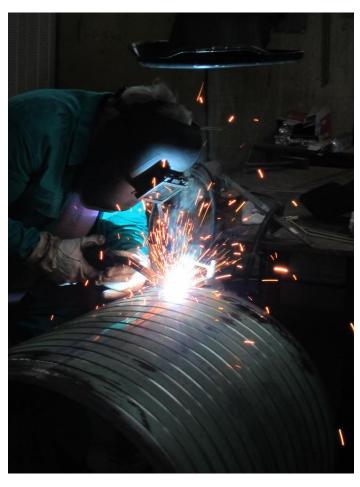
- Soggetti affetti da alterazioni dell'iride (colobomi, aniridie) e della pupilla
- Soggetti portatori di drusen (corpi colloidi) per esposizioni a luce blu
- Lavoratori che abbiano lesioni cutanee maligne o premaligne, per esposizioni a radiazioni UV
- Lavoratori affetti da patologie cutanee fotoindotte o fotoaggravate, per esposizioni a radiazioni UV e IR
- Lavoratori affetti da xeroderma pigmentosus.

Le sostanze fotosensibilizzanti (ICNIRP)

Agenti	Incidenza Tipo di reazione		Intervallo delle lunghezze d'onda efficaci
Agenti foto			
Solfonammidi e prodotti chimici associati (schermi solari, sbiancanti ottici)	n.d.	fototossica e fotoallergica	290 - 320 nm
Disinfettanti (composti di salicilanilide in saponi e deodoranti)	n.d.	fototossica e fotoallergica	290 - 400 nm
Fenotiazine (creme, coloranti e insetticidi)	n.d.	fototossica e fotoallergica	320 nm - Visibile
Coloranti	n.d.	fototossica iperpigmentazione	Visibile
Catrame di carbone e derivati (composti fenolici)	n.d.	fototossica	340 - 430 nm
Oli essenziali (profumi e acque di colonia)	n.d.	fototossica iperpigmentazione	290 - 380 nm
Composti furocumarinici (psoraleni)	n.d.	fototossica iperpigmentazione	290 - 400 nm
Solfuro di cadmio (tatuaggi)	n.d.	fototossica	380 - 445 nm

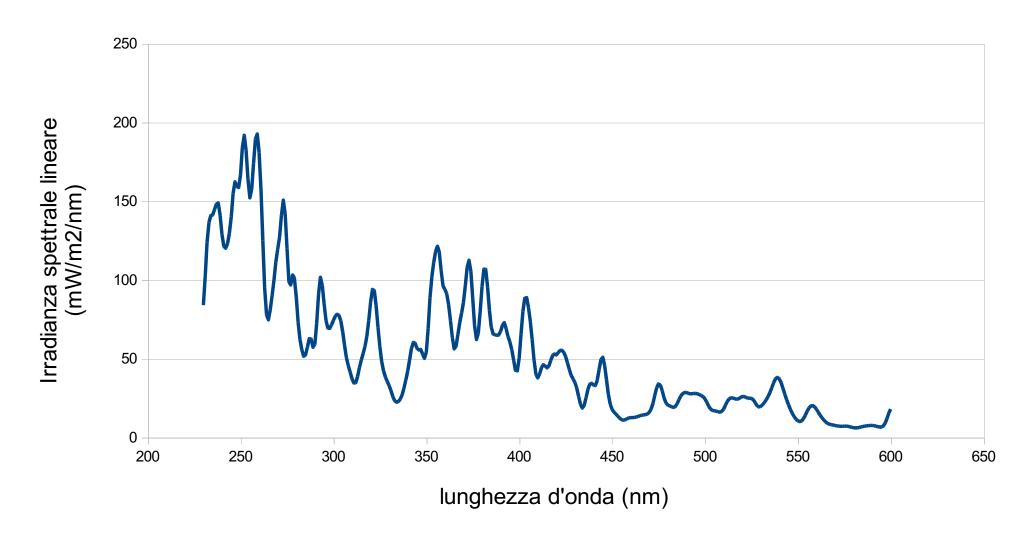
Le sostanze fotosensibilizzanti (ICNIRP)

Agenti	Incidenza	Tipo di reazione	Intervallo delle lunghezze d'onda efficaci
Agenti fotosensi	bilizzanti dopo sor	nministrazione orale o par	enterale
Amiodarone	Alta	fototossica	300 - 400 nm
Diuretici a base di tiazide	Media	fotoallergica	300 - 400 nm
Clorpromazina e fenotiazine associate	Media	fototossica e fotoallergica	320 - 400 nm
Acido nalidixico	Alta	fototossica	320 - 360 nm
Farmaci antinfiammatori non steroidei	Bassa	fototossica e fotoallergica	310 - 340 nm
Protriptilina	Alta	fototossica	290 - 320 nm
Psoraleni	Alta	fototossica	320 - 380 nm
Sulfamidici (batteriostatici e antidiabetici)	Bassa	fotoallergica	315 - 400 nm
Tetracicline (antibiotici)	Media	fototossica	350 - 420 nm


Delimitazione Aree: Art. 217 comma 2

N.B. La violazione dell'articolo 217 comma 2 è SANZIONABILE!!!

"i luoghi di lavoro in cui i lavoratori potrebbero essere esposti a livelli di radiazioni ottiche che superino i valori limite di esposizione devono essere indicati con un'apposita segnaletica. Dette aree sono inoltre identificate e l'accesso alle stesse è limitato, laddove ciò sia tecnicamente possibile


Radiazioni ottiche incoerenti nelle attività di saldatura

Valutazione del Rischio e criticità

Spettro saldatura ad arco GMAW

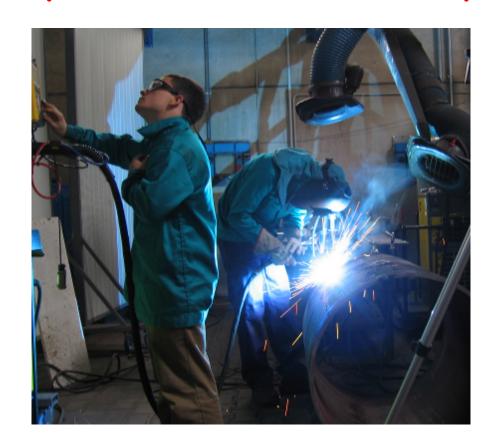
Durata massima consentita esposizione in funzione dei parametri di saldatura (a 1,5 metri dal saldatore)

Tipologia saldatura	Indice Rischio UV 180 480 nm (a)	Indice Rischio BLU e) f)
GMAW -Short- Spray Arc Filo c. 140 A-270 A	3 – 10 s (Tmax)	16-70 s (Tmax)
GTAW -TIG (Argon) 120-180 A	33 - 90 s	145-275 s
GMAW –MIG 100% Argon 150-330 A	0 – 7 s	8 – 60 s

CRITICITA': Delimitare e schermare le aree di saldatura

La violazione dell'articolo 217 comma 2 è SANZIONABILE!!!

"i luoghi di lavoro in cui i lavoratori potrebbero essere esposti a livelli di radiazioni ottiche che superino i valori limite di esposizione devono essere indicati con un'apposita segnaletica. Dette aree sono inoltre identificate e l'accesso alle stesse è limitato, laddove ciò sia tecnicamente possibile



Processo di saldatura ad arco Deve essere protetto il saldatore e anche

Bisogna proteggere chiunque transiti o sosti all'interno della zona di superamento dei limiti di esposizione

Processo di saldatura ad arco

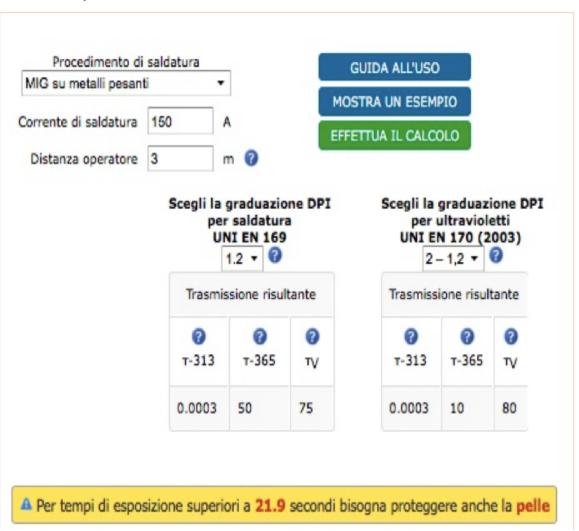
AL SALDATORE SONO ABITUALMENTE FORNITI SCHERMI OCULARI (conformi normativa specifica per DPI saldatura EN 169).

CRITICITA':

SPESSO LA CUTE DEL SALDATORE NON E' ADEGUATAMENTE PROTETTA

Processo di saldatura ad arco

CRITICITA': LE OPERAZIONI DI PUNTATURA SONO TALVOLTA EFFETTUATE "AD OCCHIO NUDO" quando non sono adottate maschere auto oscuranti



sul Portale Agenti Fisici/ROA/calcolatore saldature Per calcolare esposizione a differenti distanze e i DPI in funzione della distanza e dei tempi di permanenza <u>di chi</u> <u>transita o staziona</u> in prossimità del saldatore: saldature

Si inseriscono i dati sul tipo di saldatura (MIG/TIG etc.)

Si inseriscono la distanza di misura e quella di calcolo

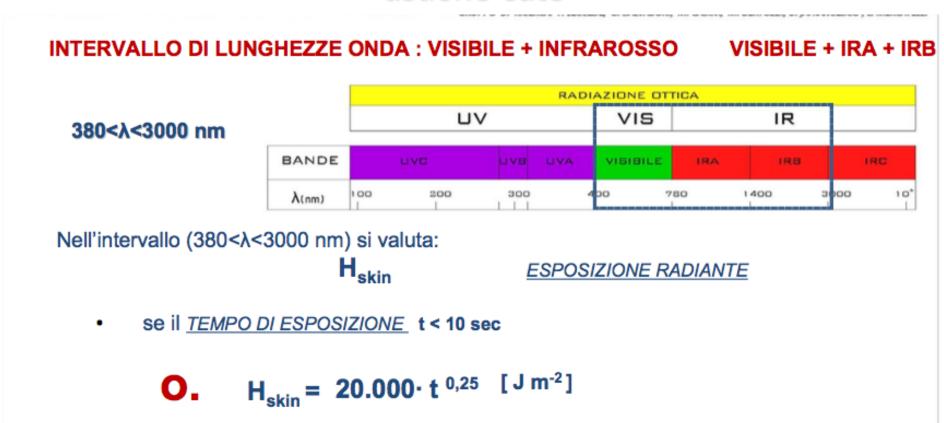
Si scelgono le graduazioni DPI in base alle specific esigenze

Processo di saldatura ad arco

... segue calcolatore per DPI sul Portale Agenti Fisici

Nelle colonne si leggono i valori delle irradianze calcolati nel punto

Prima colonna:	scelto)		
Prima Colonna.		non attenuati		UNI EN 170
valori non attenuat	UV (S) [W/m ²]	0.47	0	0
	Percentuale VLE [%]	45532.79	0.137	0.137
Seconda colonna:	Tempo max esposizione [sec]	63.25	> 8 ore	> 8 ore
valori attenuati coi	n			
filtro per saldaturo	UVA [W/m ²]	0.41	0.29	0.18
	Percentuale VLE [%]	117.68	82.37	51.95
Terza colonna:	Tempo max esposizione [sec]	24473.81	> 8 ore	> 8 ore
valori attenuati				
con filtro per UV	Blu [W/m ²]	0.25	0.23	0.22
con finto per ov	Percentuale VLE [%]	0.25	0.23	0.22
Infine indicazione di	Tempo max esposizione [sec]	392.62	436.24	446.16
protezione per la cute				


Per tempi di esposizione superiori a 63 secondi bisogna proteggere anche la pelle

Sorgenti assimilabili a corpi neri

La sorgente di emissione è un corpo (solido, liquido o gassoso) che viene portato ad alta temperatura (oltre 600-800 ° C)

- Metalli fusi
- Lampade ad incandescenza
- Lampade alogene
- Riscaldatori ad infrarossi

VALORI LIMITE IR D.lgvo 81/08 ALL. XXXVII lettera o): ustione cute

N.B. PREVIENE IL RISCHIO DA <u>USTIONE IN ESPOSIZIONI DI BREVE DURATA</u>
IN GENERE IN MENO <u>DI 10 SECONDI E'</u> AVVERTITA LA SENSAZIONE DI BRUCIORE
SULLA PELLE. QUESTO PARAMETRO <u>NON HA SENSO</u> PER ESPOSIZIONI DI DURATA
T > 10 SECONDI

VALORI LIMITE IR D.lgvo 81/08 ALL. XXXVII lettera:

INTERVALLO DI LUNGHEZZE ONDA: INFRAROSSO

IRA

780<λ<1400 nm

Nell'intervallo (780<λ<1400 nm) si valuta:

 L_R

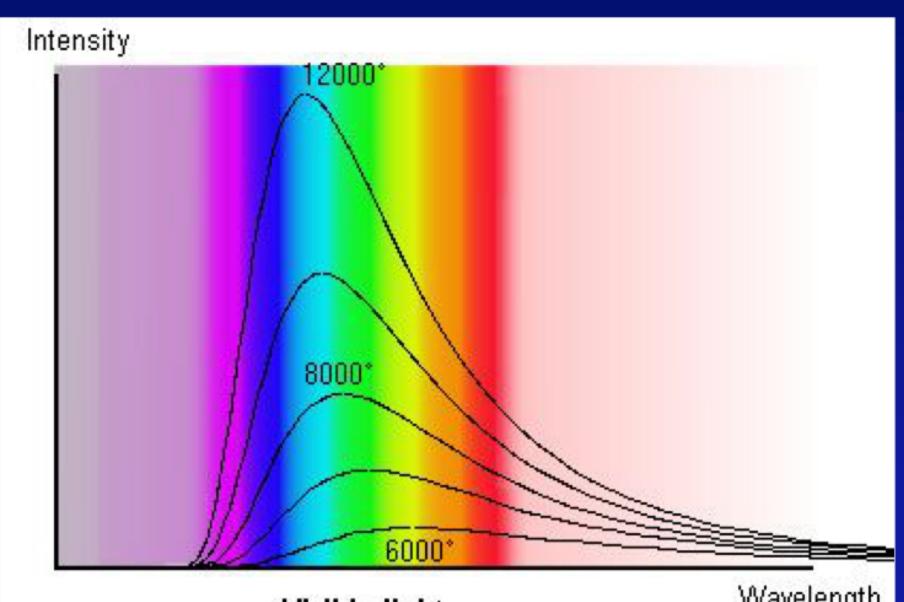
RADIANZA EFFICACE

se il <u>TEMPO DI ESPOSIZIONE</u> t > 10 sec

$$L_r = \frac{6 \cdot 10^6}{C_{\alpha}}$$
 [W m⁻² sr⁻¹]

se il <u>TEMPO DI ESPOSIZIONE</u> 10μsec < t < 10 sec

$$L_r = \frac{5 \cdot 10^7}{C_{\alpha} \cdot t^{0,25}} \quad [W m^{-2} sr^{-1}]$$


se il <u>TEMPO DI ESPOSIZIONE</u> t < 10μsec

$$L_{r} = \frac{8.89 \cdot 10^{8}}{C_{o}} [W m^{-2} sr^{-1}]$$

Cα è un parametro che vale: C_0 = 11 per α = 11 mrad C_0 = α per $11 \le α \le 100$ mrad C_0 = 100 per α > 100 mrad

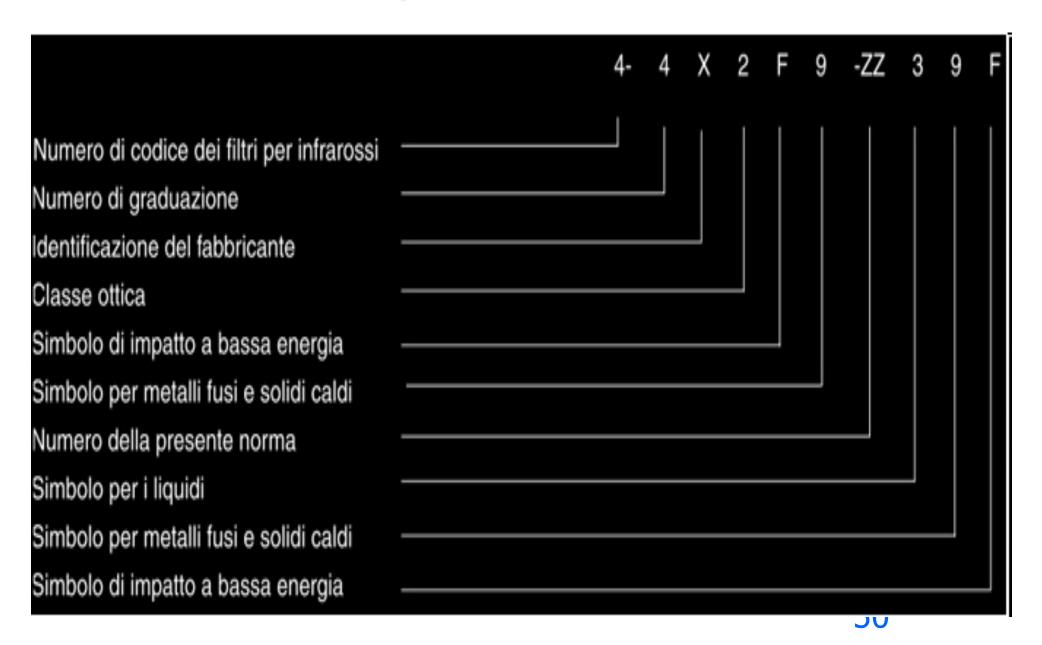
(campo di vista per la misurazione: 11 mrad) $λ_1$ = 780; $λ_2$ = 1400

Lo spettro di Corpo Nero

Visible light

Wavelength

CASO STUDIO 2 : FONDERIE


TALVOLTA SONO FORNITI occhiali di protezione per UV solare a lavoratori esposti ad Infrarossi

I DPI devono essere da IR!!!

Invece di fornire DPi per infrarossi Infrarossi

ANCHE GLI SCHERMI di protezione NON SONO specifici per RADIAZIONE INFRAROSSA

Indispensabile la formazione sulla manutenzione e sostituzione DPI

WWW.PORTALEAGENTIFISICI.IT DISPONIBILI REPORT PER DIMENSIONAMENTO DPI INFRAROSSI IN FONDERIA ...ED altro

Valutazione del rischio da esposizione a radiazioni ottiche artificiali in fonderie e criteri di scelta dei DPI

Iole Pinto, Andrea Bogi, Nicola Stacchini, Francesco Picciolo
Usl 7 Sena – Laboratorio Sanità Pubblica – Agenti Fisici

Valutazione del rischio da esposizione a radiazioni ottiche artificiali per i lavoratori e per il pubblico derivante dall'impiego di Riscaldatori ad Infrarossi

Iole Pinto, Andrea Bogi, Francesco Picciolo, Nicola Stacchini Usl 7 Sena – Laboratorio Sanità Pubblica – Agenti Fisici

Il rischio da Radiazioni Ottiche e Campi Elettromagnetici nelle strutture sanitarie

Iole Pinto, Andrea Bogi, Nicola Stacchini e Francesco Picciolo del Laboratorio Agenti Fisici della USL 7 di Siena

Procedure operative per la prevenzione del rischio da esposizione a Radiazioni Ottiche Artificiali: Cappe sterili e

Iole Pinto; Andrea Bogi, Nicola Stacchini Laboratorio Agenti Fisici ASL 7 Siena

Lampade Germicide.

Come ci si deve comportare in caso di lavorazioni che espongono al rischio di radiazioni ottiche naturali?

Coordinamento Tecnico per la sicurezza nei luoghi di lavoro delle Regioni e delle Province autonome

Decreto Legislativo 81/2008
Titolo VIII, Capo I, II, III, IV e V
sulla prevenzione e protezione dai rischi dovuti
all'esposizione ad agenti fisici
nei luoghi di lavoro

Indicazioni operative

in collaborazione con:

letituto (

ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro

Istituto Superiore di Sanità

Come ci si deve comportare in caso di lavorazioni che espongono al rischio di radiazioni ottiche naturali?

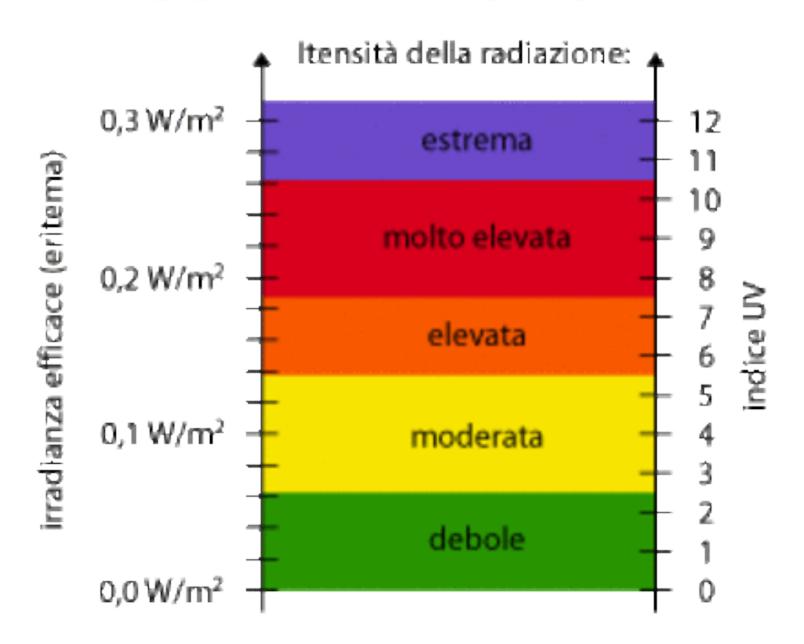
l'art.28 impone la valutazione di "...tutti i rischi per la sicurezza e la salute dei lavoratori...". In sostanza quindi, in tutti quei casi nei quali il processo lavorativo o la mansione comportino una significativa esposizione del lavoratore alla radiazione solare, si dovrà effettuare una valutazione dei rischi specifica (da intendersi come processo finalizzato ad individuare le adequate misure di prevenzione e a garantire il miglioramento nel tempo dei livelli di salute e sicurezza) anche perché gli effetti di questo rischio sono ormai scientificamente noti da tempo.

ICNIRP 14/2007

Protecting Workers from Ultraviolet Radiation

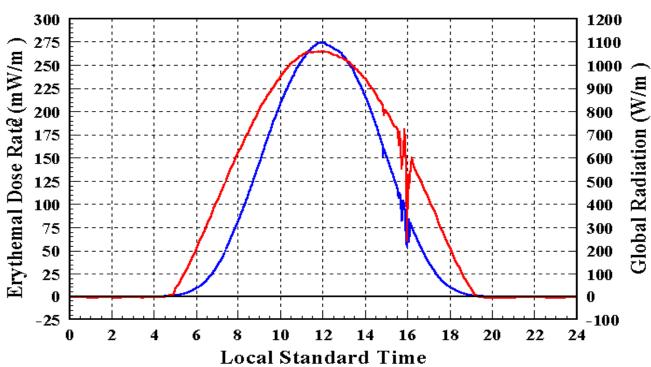
Editors:

Paolo Vecchia, Maila Hietanen, Bruce E. Stuck Emilie van Deventer, Shengli Niu



International Commission on Non-Ionizing Radiation Protection
In Collaboration with:
International Labour Organization
World Health Organization

UV INDEX (INDICE UV)


- L'Indice UV è un indice che basandosi sulla posizione del sole, sulla nuvolosità prevista, sull'altitudine, sui dati dell'ozono, predice l'intensità della radiazione ultravioletta solare giornalmente.
- Esso è espresso numericamente dal prodotto dell' irradianza efficace (W/m2) per 40.
- Es.: un' irradianza efficace di 0.1 W/m2 corrisponde ad un UV index di 4

SCALA INDICE UV

Andamento giornaliero UV Index

Diurnal Variation of Global and Ultraviolet Radiation

 \sim

Metodi di valutazione e prevenzione disponibili in PAF Portale Agenti Fisici – Ottiche Naturali

Durata esposizione	fattore (F3)		
Tutto il giorno	1		
una o due ore tra le 12 e le 16	0,5		1 -
prima mattina (entro le 10) e dopo le 17	0,2		

Riflettanza del suolo		fattore (F4)	
Neve fresca/ghiaccio/mar bianco/sale	mo 1,8		
Sabbia chiara asciutta, piscina/ ma cemento	1,2	1,8	
tutte le altre superfici, inclusa acqua	1		

Vestiario	fattore (F5)		
Tronco, spalle e braccia nude	1		
Tronco protetto ma esposte braccia e gambe	0,5	1 -	

Fattore Rischio Pelle [Fp]= f1xf2xf3xf4xf5xf6

- < 1 Non richiesta ulteriore protezione
- 1-3 T-shirt e cappello a falde
- 3-5 Indumenti protettivi maniche lunghe, cappello a falde, eventuale crema protezione solare solo su indicazione medico competente
- >5 Indumenti protettivi come sopra + creazione zone ombra o modifiche organizzazione lavoro (evitare esposizioni senza protezione dalle 12 alle 17

... in fase di pubblicazione

APP SOLE SICURO

Versione Beta

SOLE SICURO BETA

PROTEGGITI DAL SOLE NELLE ATTIVITÀ ALL'APERTO

La Componente Ultravioletta della Radiazione Solare è CANCEROGENA, può provocare tumori della pelle (carcinomi e melanomi) e danneggiare anche gli occhi. L'intensità della radiazione ultravioletta solare viene espressa in termini di INDICE UV; valori crescenti di indice esprimono crescenti livelli di rischio all'esposizione solare.

COME PROTEGGERSI

LAVORATORI

SPORT E TEMPO LIBERO

Prospettive per il futuro...App

- · Il cellulare comunica la posizione
- Il sito del meteo fornisce i dati sulle condizioni ambientali locali

- La App si calcola il livello di UV e di stress termico
- Vengono fornite le indicazioni per la protezione da UV e da colpo di calore

Caratteristiche della APP

FUNZIONAMENTO:

- collegamento attraverso una icona specifica per il tipo di lavoro
- 2. Selezione del tipo di contesto
- 3. il cellulare comunica la posizione
- Il sito del meteo fornisce i dati sulle condizioni ambientali locali
- 5. La APP calcola il livello di UV Index (e di stress termico in futuro)
- 6. Si forniscono le indicazioni per la

Per ricevere aggiornamenti iscrivetevi alla newsletter del PAF

	_	٠,			
	OTA	70	0	-+	αr
TΝ	ev	v Su		LL	CI

Iscrivendoti a questa newsletter riceverai notifiche quando:

- Vengono pubblicati o modificati documenti inerenti la valutazione del rischio
- Vengono pubblicati su PAF dati significativi campioni inerenti l'esposizione o la riduzione del rischio per specifiche condizioni epsositive/macchinari o comparti
- · Notizie su eventi, corsi etc.
- Notizie su nuove pubblicazioni, articoli etc. pubblicati su riviste nazionali o internazionali di interesse per la prevenzione da Agenti Fisici

Condizioni Sulla Privacy

L'ente che gestisce questo portale, il Laboratorio Agenti Fisici dell'Azienda USL 7 di Siena utilizzerà i dati inseriti per la registrazione al solo scopo di comunicare informazioni relative ad eventi e notizie solo inerenti al contesto stesso del Portale e cioè Agenti Fisici. La cancellazione dalla lista può essere richiesta via email all'indirizzo info@portaleagentifisici.it.

Compila questo modulo per iscriverti alla newsletter PAF

* indica i campi obbligatori		
Inidirizzo e-mail *		
Nome *		
Cognome *		
	Invia	

Grazie per l'attenzione!

Dott.ssa Iole Pinto

A.U.S.L. Toscana Sud Est
Laboratorio di Sanità Pubblica Siena
Laboratorio Agenti Fisici
Centro LAT Acustica n.164
Iole.pinto@uslsudest.toscana.it