

Design Optimization and analysis methods development

Francesco Di Caprio, Ph.D

f.dicaprio@cira.it nd Dynamic Lab.

Airframe Design and Dynamic Lab. Structural & Material Division

Why optimize?

- Generally not for all products a rigorous optimization analysis is performed, this depends on the benefit-cost ratio
- It is quite unlikely that it will be done for small parts... but if their number is high, non-execution could result in a non negligible error!
- If the designer wants his component to be the best, he must spend time optimizing
- For any structural component (part) there are a lot of reasons to optimize...

What kind of optimization approach are available?

- There are many optimization tool based on different theories area available: deterministic, stochastic, evolution methods
- A lot of them are available in dedicate general-purpose commercial codes and/or in a CAE environmental

Classes of Design Optimization (CAE/FEM)

SIZING OPTIMIZATION

Element, Material and Connectivity properties can be used as design variables

TOPOMETRY OPTIMIZATION

Special automated procedure for sizing optimization

SHAPE OPTIMIZATION

The shape of the structure can be varies to satisfy specific requirements

TOPOGRAPHY OPTIMIZATION

Special shape optimization procedure in which bead Theory is used to modify the shape of the structure

TOPOLOGY OPTIMIZATION

It finds an optimal distribution of material given the package space, loads and boundary conditions

Simulation for additive.... Think additive!

Simulation of the sintering process

Spatial and temporal distribution of temperatures

Application: Optimization of process parameters

Lattice / solid structures (titanium-composite)
Application: Shock absorbers, nozzles
Optimization tool with CAD model (ready to print)

Optimization tool for complex metal components Input: boundary condition, working volume Automatic generation of ready-to-print CAD model

Optimization tool based on genetic algorithms
For lattice structure type
Automatic generation of ready-to-print CAD model

Simulation for Additive Manufacturing Process

- Development of a numerical methodology for the simulation of the entire manufacturing process of a metal component using EBM-type powder bed fusion additive processes
- All the phases of the real manufacturing process have been incorporated into the numerical simulation:
 - Working chamber preheating
 - Spreading powders
 - Preheating of powders
 - Contour melting
 - Hatch melting
 - Final cooling

Structural optimization thinking additive

Hybrid Nozzle (composite/Titanium)

Closure Plate for Bladder tank (original: 0.5 kg, opt: 0.30 kg)

Nose landing gear fitting (PZL-M28) – AI: 524g; Ti: 473g

Nozzle – FEM/CAD

Manufactured

Fuel Tank Flanges (original - Aluminum: 300 g, opt Titanium: 318 g

Equipment support – Interstage 2/3 (CNC: 225g; ALM: 150g)

- The project of Vega C launcher is focused on capability improvement of the current Vega launcher.
- The Vega C launcher is characterized by an increase of pay-load capacity from the 1500 kg (present Vega launcher) up to 2200 kg (new Vega C) in LEO orbit. All that will enable an improvement of performance and costs.
- The Interstage structure is realized in a composite ANISO-GRID architecture. The grid structure, respect to metallic structure, allows to provide similar longitudinal stiffness, higher longitudinal compressive strength and a low mass density (almost 0.5 respect to similar metallic structures).

- The Interstage 2/3 project cover the design and manufacturing of all internal metallic secondary structure (separation spring assemblies, equipment supports and the basecover)
- All component has been designed by CIRA and manufactured by an AVIO third-party.
- All component have been installed and tested in the DMO model (global test)

FWD Sep. Spring Supp

Closure ring

Forward Interstage

Afterward Interstage

Some Load cases (total: 8 + 6-FSA) With specific requirements

CASE 1 - Forward spring support Verification Items:

- · Forward Spring Support
- Load Condition:
- Axial Force: 12168 N

Requirements:

- Max Axial displacement: < 0.5 mm
- Max rotation angle (spring axis) < 0.1°
- MoS > 0

CASE 2 - Afterward spring support Verification

Afterward Spring Support

- Load Condition:
- Axial Force: 12168 N Requirements:
- Max Axial displacement: < 0.5 mm
- Max rotation angle (spring axis) < 0.1°
- MoS > 0

CASE 4 - Lower Cup Verification

Items:

- Lower Cup
- Closure ring Load Condition:

Max Spring Axial Force: 12168 N

Requirements:

- Max radial displacement at the end: < 0.02 mm
- No interference with upper cup

CASE 6 - Verification of Spring Assembly deflection Items:

- Afterward Spring Support
- · Lower Cup
- · Upper Cup
- · Closure Ring · Separation Spring Spacer

Load Condition:

Lateral Force (Radial / Tangential): 1000 N Requirements:

- Max lateral displacement: < 1.5 mm
- MoS > 0

Many highly requirements challenging Moreover... the total mass has to be as small as possible!

Spring Assembly - Estimated Mass			
Upper Cup	0.535	[kg]	
Lower Cup	0.555	[kg]	
Forward Spring Support	0.658	[kg]	
Afterward Spring Support	1.447	[kg]	
Spacer	0.145	[kg]	
Closure Ring	0.177	[kg]	
Total Mass	3.517	[kg]	

AFT Support (1447 g)

Retainer – Interstage 2/3 (76 g)

In order to satisfy the requirements and to guarantee the smaller weight, a numerical optimization procedure was set up. The procedure uses the commercial code ANSYS and NASTRAN connected each other by means of a dedicate routine (written in APDL). The procedure starts with a model discretized by shell element and finish with a numerical model discretized by 3D elements.

Structural optimization for performance improvement

• Leading edge under bird impact

Bird initial velocity: 129 m/s

Bird mass: 3.68 kg Impact Energy: 30 kJ

Experimental Results

	The state of	
9		
—	590	
CONTRACTOR OF THE PARTY OF THE		

Best Configuration

Post impact permanent deformation

What are next steps?

- · Improvement of the tool for the manufacturing process simulation
 - Reduce the computational cost
 - Further validation test cases
 - Increase the flexibility
- Improvement of the numerical methods for design optimization of lattice structure
 - Increase the capabilities
- Development of black-box design tools for all users
 - App development
- Study other optimization tools (commercial code) in order to highlight advantages and disadvantages of our procedures
- Development of novel approaches to reduce the computational cost for structural optimization in crashworthiness field

