

Degrado, Robustezza e Metodi di calcolo per infrastrutture esistenti in calcestruzzo armato

Matteo Felitti ENGINEERING & CONCRETE CONSULTING - Università degli Studi di Napoli Federico II

Francesco Oliveto Strutturista ed Esperto in Analisi Numeriche Avanzate

OBIETTIVI

VALUTAZIONE DELLA CAPACITA' PORTANTE DI UN PONTE AD ARCO IN C.A. SOGGETTO A VARI SCENARI DI DEGRADO L'obiettivo consiste nell'eseguire le analisi per carichi verticali su ponti in c.a. – nella fattispecie, analisi statiche non lineari (Pushdown) – correlate agli scenari di degrado per corrosione delle barre di armatura. Per conseguire tale obiettivo, bisogna avere a disposizione un codice di calcolo avanzato in grado di "intersecare" le Pushdown con opportuni modelli di

degrado.

DOI: 10.1002/suco.202200374

ARTICLE

The robustness of reinforced concrete tied arch bridges: A case study

Antonio Formisano¹ | Matteo Felitti² | Francesco Oliveto³ | Lorenzo Mendicino⁴

¹Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy

²Engineering & Concrete Consulting, Vietri di Potenza (PZ), Italy

³Freelance Engineer, Viggianello (PZ), Italy

⁴Stacec SRL Company, Bovalino (RC), Italy

Correspondence

Antonio Formisano, Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy. Email: antoform@unina.it

Abstract

The robustness of a structural systems is understood as their ability to prevent or reduce the consequences of a local (exceptional and/or extreme) event. The current work aims to address the issues related to the evaluation of robustness of structures with incorporated damage. The case study of an existing reinforced concrete arch bridge is investigated in terms of robustness considering the variation of both the cracking state from concrete spalling and the corrosion of reinforcement bars. The damage variation related to these different matters is assessed both in terms of intensity and occurrence in the various structural elements of the bridge. Finally, the structural robustness index is estimated through push-down analysis to make an overall assessment of the bridge behavior.

KEYWORDS

arch bridge, corrosion, push-down analysis, reinforced concrete, robustness

WILEY Top Viewed Article

Congratulations to: Matteo Felitti

Whose work has been recognized as a top viewed article* in:

Structural Concrete

The robustness of reinforced concrete tied arch bridges: A case study

*Among work published in Structural Concrete between January 1, 2023 - December 31, 2023, up to 12 months after publication.

PREMESSE

STRUTTURA ROBUSTA

è una struttura che riesce ad incassare eventuali errori di progettazione, di realizzazione ecc.. cioè riesce a sopravvivere dopo un determinato evento. E' accettabile una eventuale crisi strutturale (LOCALE) la quale risulta, però, non devastante per il sistema (GLOBALE).

CRASC'06 Convegno Nazionale CROLLI E AFFIDABILITA' DELLE STRUTTURE CIVILI Università degli Studi di Messina Messina, 20-22 Aprile 2006

ROBUSTEZZA STRUTTURALE

F. BONTEMPI¹

¹ Dipartimento di Ingegneria Strutturale e Geotecnica, Università degli Studi di Roma "La Sapienza" Via Eudossiana 18, 00184 ROMA <u>franco.bontempi@uniroma1.it</u>

SOMMARIO

Il presente contributo vuole dare un'introduzione al concetto di robustezza strutturale che e' definita come l'abilità di una costruzione di mostrare un degrado delle proprie qualità proporzionato all'entità di un'azione o di un evento negativo. A tale scopo, nella parte introduttiva di questo lavoro si considerano, nell'ordine, i concetti di azioni/eventi HPLC e LPHC, la definizione di complessità e la nozione di sincronicità, l'impostazione euristica delle verifiche di sicurezza e prestazionali secondo scenari di contingenza. Nella parte centrale, e' data una definizione formale di robustezza strutturale e sono indicate strategie di progetto per ottenerla. Essendo la robustezza una proprietà sistemica della costruzione che richiede una visione olistica dell'intero problema strutturale, nella seconda parte del lavoro e' dato spazio alla definizione di sistema strutturale e alle strategie di analisi strutturale. Infine, e' sviluppata un'applicazione. Costante riferimento e' fatto al quadro normativo italiano del Testo Unitario delle Norme Tecniche per le Costruzioni del D.M. 14/09/05 pubblicato sulla Gazzetta Ufficiale della Repubblica Italiana il 23 Settembre 2005, che ha ritenuto il requisito di robustezza centrale al processo di progettazione strutturale.

Run away di un sistema strutturale da Franco Bontempi

"qui si nota come un effetto negativo può ingrandirsi esponenzialmente fino ad assumere una grandezza che esce dal quadro di riferimento previsto."

STRUTTURA DEGRADATA

è una struttura che contiene – ad esempio – elementi, le cui sezioni in c.a., presentano corrosione delle barre di armatura e fessurazione del calcestruzzo

Università degli Studi di Ferrara

"La corrosione è un processo spontaneo ed irreversibile"

#PoliLaPP #PoliMi #corrosion #materials #protection #electrochemistry #AIM

a cui è possibile associare TRE modelli di degrado

MODELLI DI DEGRADO

CORROSIONE UNIFORME

CORROSIONE LOCALIZZATA

CORROSIONE SOTTO SFORZO

TIPOLOGIE DI PONTI AD ARCO

PONTI E GRANDI STRUTTURE

Prof. Pier Paolo Rossi Università degli Studi di Catania

- Ponti ad arco incastrato

La linea delle pressioni non ha alcun punto di passaggio obbligato.

Nel passato, tali ponti ad arco erano realizzati in muratura; attualmente sono costruiti in cemento armato o acciaio. Nervature parallele e verticali collegano la struttura da arco con l'impalcato.

Schema statico

Ponte de Los Tilos, La Palma, isole Canarie (Spagna)

- Ponti ad arco a due cerniere

L`arco è collegato all'impalcato con elementi isolati, spesso collegati da elementi trasversali a formare una struttura reticolare.

Presenta una buona adattabilità ai carichi mobili

e ai cedimenti verticali ed esercita una spinta minore rispetto all'arco incastrato.

Schema statico

Ponte di Maria Pia sul fiume Douro a Porto (Portogallo)

- Ponti ad arco a tre cerniere

La linea delle pressioni è obbligata a passare per i perni delle cerniere d'imposta e per quello della cerniera posta in chiave.

E' insensibile alle variazioni differenziali di temperatura e ai cedimenti differenziati dei vincoli.

Ponte di Fragnée sul fiume Meuse a Liegi (Belgio)

(E. Jacquemin e P. Demany)

- Ponti ad arco a spinta eliminata

I carichi sono traferiti dall'impalcato all'arco tramite elementi verticali. L'impalcato ha la funzione di assorbire la spinta orizzontale dell'arco ed è metallico perché soggetto ad elevati sforzi di trazione.

Bridge 20 a Londra (Inghilterra)

(R. Benaim)

Validazione di un modello di trave a fibre in grandi spostamenti in presenza di corrosione. Il test del NIST (Lew et al. 2011)

(in collaborazione con Francesco Oliveto)

NIST Technical Note 1720

An Experimental and Computational Study of Reinforced Concrete Assemblies under a Column Removal Scenario

H.S. Lew Yihai Bao Fahim Sadek Joseph A. Main Santiago Pujol Mete A. Sozen

Prototipo sperimentale (Lew et.al, NIST 2011)

Modello sperimentale sottoposto a grandi spostamenti (circa 110 cm) e modalità di collasso con rottura dell'armatura longitudinale inferiore del nodo centrale (Lew et.al, NIST 2011)

Le analisi effettuate come da test sperimentale prevedono l'applicazione di una forza al centro della trave con intensità pari a 320 kN. Lo stato di danno (ampiezza fessure) e lo spostamento massimo rilevato sono rispettivamente circa 70 mm e 1100 mm.

3.3.2. Validazione modello di calcolo e confronto con test sperimentale

Al fine di validare la bontà dei modelli di calcolo e le relative analisi eseguite nei casi studio contenuti nel secondo volume e la comprensione degli effetti arco e catenaria che si sviluppano in elementi trave, viene effettuata e tarata una simulazione numerica su una prova sperimentale di letteratura tecnica presente nel rapporto 1720/2011 del NIST condotta da Lew et.al. Per la descrizione del test si rimanda alla pubblicazione presente in bibliografia. Nell'esempio proposto sono stati riportati in figura 3.18 e tabella 3.1-2 i dati principali del prototipo in termini di geometria, caratteristiche fisico-meccaniche dei materiali, condizioni di vincolo e di carico.

Parametri meccanici del calcestruzzo		
Elemento	Resistenza a compressione $f'_c[MPa]$	Resistenza a trazione $f'_t[MPa]$
Fondazione	39.00	-
Trave e colonne	32.00	3.10
Tabella 3.1 – Caratteristiche meccaniche del calcestruzzo		

Figura 3.18 - Test sperimentale di Lew et.al (NIST Technical Note - 1720, 2011)
NOTA: IPOTESI DI BASE

Modello di trave a fibre non lineare con individuazione dei punti di performance, in grandi spostamenti.

Applicazione corrosione armature e degrado calcestruzzo intorno alle barre

NOTA 3:

Meccanismi resistenti: TRAVE (OA), ARCO (ABC), CATENARIA (CDE). TRAVE = flessione e taglio ARCO = calcestruzzo compresso CATENARIA = armature tese

Effetto arco e catenaria, influenza del degrado: (x_corr = 0,00 **AZIONE CATENARIA** Nessuno F = 320 KNElastico x(t **Barra acciaio** Cls Fessurato Cls Plasticizzato Cls Schiacciamento Non Confinato Acciaio Snervato Cls Schiacciamento Confinato Acciaio Rottura Compressione Acciaio Rottura Trazione Collasso a taglio D_{θ} Z Y X

i 🖪 🖃

Curva di capacità in Push-down

Con riferimento al modello INTEGRO (Xcorr = 0 mm), si possono fare le seguenti osservazioni sull'affidabilità del modello.

- Il moltiplicatore di carico, coincidente nel caso in esame con l'indice di robustezza deterministico, è pari a 0,985 a cui corrisponde un carico massimo di circa 315 kN, rispetto a 320kN, con un errore massimo di circa il 2%.

Effetto arco e catenaria, influenza del degrado: x_corr = 0,50 mm

AZIONE CATENARIA

Effetto arco e catenaria, influenza del degrado: x_corr = 1,00 mm

820 mm

Effetto arco e catenaria, influenza del degrado: x_corr = 1,50

ROTTURA CATENARIA

Effetto arco e catenaria, influenza del degrado: x_corr = 2,00

CATENARIA NON SVILUPPATA

455 mm

Effetto arco e catenaria, influenza del degrado: x_corr = 2,50

CATENARIA NON SVILUPPATA

STACEC

Effetto arco e catenaria, influenza del degrado: x_corr = 3,00

CATENARIA NON SVILUPPATA

320 mm

CONFRONTI

Spostamento verticale nodo di controllo[mm]

VARIAZIONE INDICE DI ROBUSTEZZA IN FUNZIONE DEL LIVELLO DI PENETRAZIONE DELLA CORROSIONE

OSSERVAZIONI:

- 1. Il test sperimentale ha consentito di raggiungere spostamenti e stati di fessurazione elevati (non riscontrabili nelle strutture ordinarie in esercizio o allo stato limite ultimo);
- 2. L'effetto della corrosione uniforme sullo sviluppo completo della catenaria in grandi spostamenti è minimo per profondità di penetrazione inferiore a 1 mm;
- Per profondità di corrosione > 1 mm il meccanismo a catenaria non si sviluppa (in questo caso l'effetto del degrado comporta una prematura rottura delle armature a trazione e instabilità delle armature compresse);
- 4. Nella condizione di corrosione massima Xcorr = 3 mm, la perdita di resistenza in termini di indicatore di robustezza rispetto alla struttura integra è pari a circa il 56%.

CASO STUDIO

The bridge over the river Cassibile: a structure in r/c Bowstring scheme dating 1930 Il ponte sul Cassibile. Una struttura in c.a. tipo Bowstring del 1930

E. Lo Giudice¹, G. L. Di Marco², M. Gallo¹, R. Mantione²

¹ Laboratorio Dismat srl, Canicattì (AG)
² Studio Tecnico Lo Giudice – Di Marco, Canicattì (AG)

ABSTRACT: The theoretical and experimental study carried out for the evaluation of the static conditions of the bridge over the river Cassibile, to the service of the SS 115, is here described. The bridge was built in 1930 by Ferrobeton following the structural Bowstring scheme. The construction covers, among other things, a significant historical value as it allowed the passage of armored vehicles British Army landed in Sicily in July 1943./Viene descritto lo studio teorico-sperimentale svolto per la valutazione delle condizioni statiche del Ponte sul Cassibile a servizio della SS 115. Il ponte è stato costruito nel 1930 dalla Ferrobeton seguendo lo schema strutturale di tipo bowstring. Il manufatto riveste, tra l'altro, una notevole valenza storica poichè consentì il passaggio dei mezzi corazzati dell'Armata Britannica sbarcata in Sicilia nel luglio del 1943.

Le verifiche strutturali sono state effettuate secondo i criteri di sicurezza contemplati dal DM 2008, imponendo le stesse configurazioni di carico utilizzate per le prove di carico; in particolare sono state effettuate tre verifiche:

Nei studio ponti bow-string gli elementi di sostegno dell'impalcato svolgono un ruolo fondamentale e quindi deve essere riservata loro particolarmente attenzione, in considerazione di ciò si è ritenuto opportuno saggiare la sensibilità dello schema strutturale in relazione alla plasticizzazione di uno di essi.

Figure 13. Above: Pattern of Cassibile Bridge, below; Varied pattern of Cassibile Bridge/ In alto: schema del Ponte Cassibile, in basso: schema variato del Ponte Cassibile.

Si è appurato che tale incremento sugli elementi strutturali immediatamente adiacenti è considerevole; questo è confermato dall'aumento anche dei coefficienti di sfruttamento, rispetto allo schema utilizzato per il calcolo.

Questo dimostra che la plasticizzazione del pendino comporterebbe un ulteriore aggravio delle condizioni statiche del manufatto.

Figure 14. Above: Verification in entire model, below; Verification in varied model / In alto: Verifica N/M schema originario, in basso: Verifica N/M schema variato.

In definitiva, nonostante la struttura abbia dato prova di un comportamento del tipo elastico-lineare ed il regime di tensione delle barre longitudinali dei pendini si sia dimostrato essere assolutamente adeguato alle caratteristiche meccaniche dei materiali, tuttavia, l'avanzato stato di degrado di cui i vari elementi sono affetti e le verifiche di resistenza, hanno fatto protendere verso un'apertura al traffico con forti limitazioni, imponendo che possano transitare veicoli fino a 35 quintali, solo su corsia centrale.

Per la descrizione dello stato dell'opera si fa riferimento all'articolo presentato al convegno AICAP da: E. Lo Giudice, G. L. Di Marco, M. Gallo, R. Mantione, "The bridge over the river Cassibile: a structure in r/c Bowstring scheme dating 1930".

Figure 1. Bridge on the Cassibile river/ Ponte sul Fiume Cassibile

OBIETTIVI:

La valutazione della robustezza tramite le analisi pushdown su modello di struttura integra e danneggiata da corrosione localizzata delle armature longitudinali (per azione dei cloruri) su diversi scenari di degrado e si analizza:

- a) il PONTE INTEGRO al variare della posizione dei carichi mobili secondo lo schema 1 riportato nelle NTC 2018;
- b) il PONTE con DEGRADO al variare:
- > dello scenario di danno;
- > della posizione dei carichi mobili secondo lo schema 1 riportato nelle NTC 2018.

Gli scenari di degrado considerati prevedono la presenza della corrosione sui seguenti elementi strutturali:

- Corrosione dei pendini di collegamento arcate travi di impalcato laterali;
- Corrosione dell'impalcato in c.a. costituito dalle travi principali e traversi;
- ✓ Corrosione dell'impalcato in c.a. + le arcate laterali.

La corrosione sugli elementi strutturali prevista dagli scenari descritti, prevede una profondità di penetrazione della corrosione pari a xcorr=1.00 mm e un fattore di Pitting R=3. Ai fini della distribuzione delle armature corrose sugli elementi strutturali presenti negli scenari, sono state effettuate le seguenti ipotesi:

- Travi principali: corrosione delle armature longitudinali all'intradosso e ferri di parete;
- Traversi di collegamento: stessa ipotesi delle travi principali;
- Pendini verticali: corrosione su tutte le armature longitudinali;
- Arcate laterali: corrosione sulle armature longitudinali inferiori, superiori e di parete.

Sono state escluse dalla valutazione la corrosione delle armature trasversali e della soletta superiore, trascurando la riduzione della resistenza a taglio degli elementi, ma rinunciando agli eventuali contributi della resistenza membranale della soletta in condizioni estreme per effetto arco e catenaria. Descrizione dell'opera e rilievo del degrado: il manufatto ha una luce di 30 metri circa, con monta di 6,00 m ed un franco di 5,00 m. L'interasse delle arcate è di 8,30 m, mentre la carreggiata è larga 7,50 m. Ha quindi un rapporto tra monta e luce pari a 1/5, valore nella media per ponti del tipo a spinta eliminata. La sovrastruttura poggia su pile in c.a.

Nella tabella sono riportare le principali caratteristiche geometriche del ponte e degli elementi strutturali, la distribuzione delle armature e le caratteristiche fisico-meccaniche dei materiali costituenti il calcestruzzo armato.

GEOMETRIA PONTE											
L [m]	H _{monta} [m]		I _{arcate} [m]	L _{carreggiata} [m]		Franco [m]			L/H ₂ [m]		
30.00	6.00		8.30	7.50		5.00		<1/5 - Ponte a spinta eliminata			
GEOMETRIA SEZIONI											
Travi principali lat. le		Trave princi	Trave principale centrale		Traversi		Pendini	ndini Arcat		e soletta	
b [cm]	h[cm]	b [cm]	h[cm]	b [cm]	h[o	cm]	L[cm]	b [cm]	h	ı[cm]	h[cm]
50	80	20	80	25	8	30	30	50		100	12-15
MATERIALI – LIVELLO DI CONOSCENZA LC2 →FC=1.20											
Calcestruzzo				Acciaio							
f_{cm}		ε _{cu}	ε _{tu}	f_{vm}			ε _{cu}			ε _{tu}	
[Mpa]		[%]	[%]	[Mpa]			[%]			[%]	
18.00		0.20	0.35	320.0			6.00			10.00	
DISTRIBUZIONE ARMATURE ELEMENTI											
Sezioni			Armature lo	igitudinali			Armature Trasversali				
Travi principali laterali		Inf.	Su).	Parete		Estermo	01 (Campata		Estremo 2
		5¢20	5¢2	0	1+1¢20		1¢6/2:	5	1¢6/25		1¢6/25
Trave principale centrale		3¢20	3¢2	:0	2+2¢20		1¢6/20	0	1¢6/20		1¢6/20
Traversi		3¢18	3¢1	8	-		1¢6/20	0	1¢6/20		1¢6/20
Pendini		5φ20	5¢2	0	1φ20		1¢8/1	5	1\$\$/15		1φ8/15
Arcate		бф20	бф2	0	2+2¢20		1¢8/2	0	1¢8/20		1¢8/20

Gran parte degli elementi strutturali sono in avanzato stato di degrado, con la disgregazione o il distacco dello strato corticale di calcestruzzo. Molto estese sono le superfici in cui le armature sono vista.

Figure 4. Degradation of cross tested beam with concrete cover spalling and longitudinal and cross bars corrosion /Degrado del traverso di testata con espulsione del copriferro e corrosione delle barre longitudinali e traversali.

Figure 5. Thrust beam – Concrete cover expulsion, reinforcement corrosion /Trave reggispinta – Espulsione del copriferro, corrosione dell'armatura longitudinale e sfaldamento dell'armatura trasversale

Figure 2 – Cross beam and thrust beam/Traversi e trave reggispinta

Pendini – Espulsione del copriferro, corrosione dell'armatura longitudinale e trasversale dei pendini Azioni variabili da traffico. carichi verticali Q1: Per realizzare le condizioni di carico più gravose il numero delle colonne di carichi mobili da considerare nel calcolo è quello massimo compatibile con la larghezza della superficie carrabile, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna corsia in 3,00 m. Nella figura seguente un esempio di numerazione delle corsie.

Azioni variabili da traffico. Carichi verticali: Q1.

Schema di carico 1 utilizzato ai fini delle analisi di capacità portante pushdown

Valutazione della capacità portante.

La procedura da eseguire è la seguente:

- Creare il modello di calcolo 3D non lineare (geometria, materiali);
- Applicare agli elementi finiti del modello (elementi beam/column a plasticità diffusa) le distribuzioni dei carichi da traffico stradale per ogni combinazione dei carichi dello schema 1;
- Definire ed eseguire le analisi statiche non lineari per determinare il moltiplicatore dei carichi di collasso;
- Calcolare il valore minimo dei moltiplicatori λ_{MIN} dei carichi di collasso al variare della distribuzione dei carichi da traffico stradale che definisce l'indice di Robustezza del ponte I_R;
- La verifica è soddisfatta se $\lambda_{MIN} = I_R \ge 1$.
Valutazione della capacità portante:

Modello computazionale del ponte in oggetto – Posizione 11 (centrale) dei carichi mobili

IPOTESI DI BASE Adozione del modello di degrado localizzato alla Rodriguez con fattore di pitting pari a R = 3

Scenari di degrado: I Corrosione dei pendini con Xcorr=1.00 mm e fattore di Pit R=3

Scenari di degrado: II Corrosione dell'impalcato (travi principali e traversi) con Xcorr=1.00 mm e fattore di Pit R=3

Scenari di degrado: III Corrosione dell'impalcato ed archi perimetrali con Xcorr=1.00 mm e fattore di Pit R=3

Risultati delle Analisi:

Si riportano i risultati ottenuti dalle analisi push-down con riferimento agli scenari di degrado ipotizzati.

I parametri principali da evidenziare sono:

- Curve push-down con rappresentazione stato di danno degli elementi strutturali e comportamento globale del ponte sotto livelli di carico crescenti, per struttura integra e danneggiata;
- Andamento dell'indice di Robustezza in funzione dello scenario di degrado e al variare della posizione del carico mobile, al fine di individuare la posizione critica dei carichi e il grado di severità dello scenario in termini di perdita di Robustezza rispetto al ponte integro;
- Andamento dell'indice di Robustezza al variare del tempo con xcorr=0.5-3.0 mm, nella posizione critica dei carichi mobili e con lo scenario di degrado.

<u>Stato di danno ponte integro</u> – Curva Pushdown posizione critica. Rottura a trazione armature travi impalcato e traversi

Stato di danno ponte con degrado pendini Xcorr=1.0 mm Curva Pushdown posizione critica. Rottura a trazione armature pendini e collasso impalcato

Indice di robustezza al variare dello scenario e profondità di corrosione (xcorr: 0.5-3.0 mm)

Sezione pendino con degrado, riduzione capacità portante, calcestruzzo fessurato con rottura barre a trazione per raggiungimento duttilità ultima (xcorr: 3 mm = 1 [mm] x 3 [R])

Sezione pendino con degrado, riduzione capacità portante, calcestruzzo fessurato con rottura barre a trazione per raggiungimento duttilità ultima (xcorr: 3 mm = 1 [mm] x 3 [R])

ezione										
Aso	[mm²]	254.47		Resistenza						
De	[mm]	18.00		fsyo	[N/mm ²]	266.	667			
δAs	[%]	30.56		δfsy	[%]	15.2	8	- 15% circo		
As	(mm²)	176.71		fsy	[N/mm ²]	225.	926			
As/Asa	[%] 69.44	69.44		fsy/fsy ₀ [%]		84.7	2			
			fsuo	[N/mm ²]	266.	667				
				fsu	[N/mm ²]	225.	926			
				fsu/fsua	[%]	84.7	2			
							Duttilità			
- 30% circa							δεsu	[%]		
							estu:	[%]	10.00	
							estu	[%]	2.62	
							ESCU0	[%]		
							εscu	[%]	1.57	
- 25% circa					•	esu/esu-	[96]	26.19		

La valutazione tramite analisi pushdown su modelli a plasticità diffusa in grandi spostamenti con modelli di degrado per corrosione da pitting, tramite FATANEXT e DEGRADO NEXT, ha permesso di determinare e osservare per il ponte in oggetto:

- L'indice di Robustezza per la struttura integra e la posizione critica dei carichi mobili;
- L'indice di Robustezza nella posizione critica in funzione dello scenario e dell'entità del degrado con xcorr compreso tra 0.5-3.0 mm;
- Lo scenario critico è per corrosione dei pendini, la cui rottura a trazione comporta il collasso della struttura con una riduzione dell'indice di Robustezza I_R di circa il 50 %;
- I pendini assolvono un ruolo fondamentale in quanto conferiscono alla struttura il grado di ridondanza oltre che di collegamento tra impalcato e archi principali.

Nel caso di cedimento di questi ultimi le arcate e l'impalcato non riescono a ridistribuire le sollecitazioni assorbite dagli elementi verticali per cui si assiste al collasso improvviso.

Matteo Felitti

Engineering & Concrete Consulting e Università Federico II di Napoli

https://www.ingenio-web.it/articoli/autori/felitti-matteo/

DOI: 10.1002/suco.202200374

ARTICLE

tb WILEY

The robustness of reinforced concrete tied arch bridges: A case study

Antonio Formisano ¹ 💿	
Lorenzo Mendicino ⁴	

Matteo Felitti² | Francesco Oliveto³ |

¹Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy

²Engineering & Concrete Consulting, Vietri di Potenza (PZ), Italy

³Freelance Engineer, Viggianello (PZ), Italy

⁴Stacec SRL Company, Bovalino (RC), Italy

Correspondence

Antonio Formisano, Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy. Email: antoform@unina.it

Abstract

The robustness of a structural systems is understood as their ability to prevent or reduce the consequences of a local (exceptional and/or extreme) event. The current work aims to address the issues related to the evaluation of robustness of structures with incorporated damage. The case study of an existing reinforced concrete arch bridge is investigated in terms of robustness considering the variation of both the cracking state from concrete spalling and the corrosion of reinforcement bars. The damage variation related to these different matters is assessed both in terms of intensity and occurrence in the various structural elements of the bridge. Finally, the structural robustness index is estimated through push-down analysis to make an overall assessment of the bridge behavior.

KEYWORDS

arch bridge, corrosion, push-down analysis, reinforced concrete, robustness

INTRODUCTION 1

The durability problems of reinforced concrete structures, which are deeply felt by researchers and designers, are often related to corrosion degradation. Typically, these harmful phenomena for the structural health are induced by carbonation or attack of substances containing chlorides.

In fact, over time, reinforced concrete can be subjected to various attack type:

• by carbonation, which consists in the neutralization of the concrete alkalinity by carbon dioxide from the external environment, with destruction of the oxide film used to protect the bars;

- by penetration of chlorides, when a certain noise content is reached and exceeded on the surface of the reinforcements, so to destroy the protective film;
- · by dispersed currents, which interfere with the reinforcement bars, passing in some parts from concrete to bars and in other zones from bars to concrete.

When the passivity conditions cease to exist, the corrosive process of the reinforcement bars, which is of an electrochemical nature, can take place if the concrete meets water and oxygen. The ignition and propagation phases involve the following sub-phases (Figure 1a,b):

• Initial phase without corrosion (depassivation) for $t = t_{(1)}$. It persists until the concentration of aggressive

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2023 The Authors. Structural Concrete published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete.

FIGURE 1 (a) Schematic representation of degradation as a function of damage; (b) cover ejection, splitting and spalling failure.¹

TABLE 1 Degradation models for decrease of the bar resistant cross-section.

agents does not exceed certain limits for the lack of passivation of reinforcing steel;

- First propagation phase (cracking) up to $t = t_{(2)} = t_{cr1}$, where the first crack occurs in the concrete surface due to the reinforcement corrosion;
- Second propagation phase (spalling), with a higher propagation speed due to the presence of cracks, up to $t = t_{(3)} = t_{cr2}$, when the operation limit state is no longer satisfied with the concrete spalling;
- Last propagation phase (collapse), denoted by $t = t_{(4)} = t_u$, when the resistance reduction is such that the demands imposed by the ultimate limit state are no longer met.

The aim of the present work is the automatic implementation of corrosion degradation models of bridges through a non-linear fiber FEM model, having a forcebased formulation in the field of large displacements which is setup in the FATANEXT NL calculation code produced by the STACEC Srl company. The implemented methodology is applied to a tied arch type concrete arch bridge dating back to 1930. With this approach, different corrosion degradation scenarios related to any spacetime distributions with a reasonably reduced time are examined. Therefore, as final goal of the study, the robustness indicators for different scenarios and degrees of corrosion are assessed, so leading to the evaluation of either the capacity or the residual life of the structure.

2 | MODELING OF CORROSION DEGRADATION MECHANISMS

The corrosion phenomenon has a considerable influence on the mechanical behavior of reinforced concrete structural elements with reference to:

4505

- a. Reduction of the cross-section of reinforcing bars;
- b. Decrease of the mechanical features (strength and ductility) of steel;
- c. Cracking of concrete with reduced compressive strength;
- d. Deterioration of the adhesion mechanism.

FIGURE 2 Residual resistance of corroded reinforcing bars.^{6,7}

.....

Corrosion leads to the reduction of both the bar crosssection and the elongation capacity of the intact part of the reinforcement bar, with all the negative consequences on structural ductility. Iron oxide (rust), which is the product of the corrosion process, generates a volume larger than that of the basic metal. This produces radial compression stresses (S_c) in the concrete surrounding the bar and, for equilibrium, the emergence of circumferential tensile stresses (S_r). When these latter pressures reach the concrete tensile strength, the formation of cracks orthogonal to the tensile isostatics occur, usually leading toward the complete expulsion of the cover (spalling failure of Figure 1b).

The concrete-bars perfect bond is one of the fundamental properties ruling the satisfactory behavior of reinforced concrete elements. It is worth noticing that the adherence between materials is also influenced by corrosion through the following mechanisms:

FIGURE 3 Cocrete parts damaged by corrosion of bars.⁷

FIGURE 4 Picture and front view of the bridge on the Cassibile river.

- cracking of concrete;
- change of properties at the steel-to-concrete interface;
- less confinement of concrete due to the corrosion of stirrups;
- instability of longitudinal reinforcement due to concrete spalling;
- reduction of the cyclic response under horizontal actions with decrease of both the dissipated energy and the rotational capacity of structural elements.

The reduction of the reinforcement bar cross-section can be evaluated according to the degradation models depicted in Table 1.

The variation of the steel mechanical properties according to the Val et al.'s model³ can be determined based on the following linear relationship (Figure 2):

$$f = (1 - \beta \cdot Q_{\rm corr}) \cdot f_0 \tag{1}$$

where f_0 is the yielding or ultimate strength of the intact bar, Q_{corr} is the corrosion level [%] and β is equal to 0.5. $Q_{\rm corr}$ is calculated by means of the Stewart's formulation⁴:

$$Q_{\rm corr} = \alpha_{\rm pit} = A_{\rm pit}(t) / A_0 \tag{2}$$

where A_{pit} is the corroded bar area, function of the time t, and A_0 is the original area of the element without corrosion.

In the case of localized corrosion with the Rodriguez's approach,² uniform corrosion formulas can be used considering the pitting factor R. For the pit model following the Val et al.'s approach,³ the reduction of the steel ultimate deformation from the value $\varepsilon'_{su} = \varepsilon_{su}$, for virgin material, up to $\varepsilon'_{su} = \varepsilon_{sy}$, for the complete ductility loss, is evaluated through the following formula [8]:

$$\varepsilon_{\rm su}' = \varepsilon_{\rm sy} + (\varepsilon_{\rm su} - \varepsilon_{\rm sy}) \cdot \left(1 - \frac{\alpha_{\rm pit}}{\alpha_{\rm pit, \rm max}}\right) \text{if } \alpha_{\rm pit} \le \alpha_{\rm pit, \rm max} \quad (3)$$

The trend is linear and is proportional to the reduction of area caused by pitting, as defined in the following expression:

TABLE 2 Geometrical reinforcement type of brid	Geometrical features and	Bridge geometry										
	it type of official sections.	<i>L</i> [m]	<i>m</i> [n	n] <i>p</i>	[m]	w [m]	f[m	n] <i>L/m</i> [m]			
		30.00	6.00)	8.30	7.50	5.00) ≤1/5-	-eliminat	ed thru	st bridge	
		Geometry of sections										
		Lateral main beams		Central main beam		Secondary beams		Tie- beams	Arches		Slan	
		b [cm]	h [cm]	b [cm]	h [cm]	b [cm]	h [cm]	$\boldsymbol{b} \times \boldsymbol{h}$ [cm]	b [cm]	h [cm]	h [cm]	
		50	80	20	80	25	80	36 imes 30	50	100	12-1	
		Materials—Knowledge level LC2 \rightarrow FC = 1.20										
		Calcestruzzo Acciaio										
		$f_{\rm cm}$ [M]	pa] f	cm-res [%]	$\varepsilon_{ m cu}$	[%]	e _{tu} [%]	f _{ym} [Mpa]] $\varepsilon_{ m cu}$	[%]	ε _{tu} [%]	
		18.00		20	0.	.20	0.35	320.0	6.0	00	10.00	
		Reinforcement of cross-sections										
			Longitudir			ars		Stirrups				
		Section type		Down	Тор	Intermediate		Left support	Middle	Right Middle suppor		
		Lateral beam	main s	5ф20	5ф20	1 + 1	Ιφ20	1φ6/25	1¢6/25	1	ф6/25	
		Central beam	main	3ф20	3ф20	2 + 2	2ф20	1ф6/20	1ф6/20	1	ф6/20	
		Second beam	ary s	3ф18	3ф18	-		1ф6/20	1ф6/20	1	ф6/20	
		Tie-bea	ms	5φ20	5ф20	1φ	20	1φ8/15	1φ8/15	1	ф8/15	
		Arches		6ф20	6ф20	2 + 2	2ф20	1φ8/20	1φ8/20	1	φ8/20	

4507

508 fib

FIGURE 5 Views of transverse beams (a), longitudinal beams (b) and tie-beams (c) with spalling of concrete cover, corrosion of the longitudinal reinforcement (d) and flaking of the transverse reinforcement.

$$\alpha_{\rm pit} = A_{\rm pit}(t) / A_0 \tag{4}$$

From several experimental studies conducted to evaluate the parameter $\alpha_{pit,max}$ ⁴ it is seen that it oscillates between 0.5 and 0.1.

The concrete degradation is herein modeled so to grasp in a simple way the main consequences on the bridge global behavior. In particular, the damage to the material in the area surrounding the corroded reinforcing bars with a compressive strength decreases.⁵ The concrete parts located near the reinforcing bars, which could be damaged, must therefore be identified. Unlike other simplified models,⁸ where the characteristics of the degraded material are assigned a priori to all the elements of the compressed zone cover, the model proposed in Reference 7 foresees that only the elements included in a circle of the bar radius equal to the cover are subject to degradation; moreover, only in the elements outside the confined core the degradation is activated (Figure 3).

Despite being a simplified model, it can be used to find the different damage mechanism dependent on the arrangement of bars: if the bars are very close to each other, the cover will tend to detach according to a horizontal fracture plane; instead, if the bars are far away or are placed in the corners, the damage will be concentrated in the part near the bar, with inclined fracture planes. Degradation of the compressive strength for cracked concrete elements is modeled with reference to the following relationship⁷:

$$f_{\rm c,red} = f_{\rm c} / (1 + K \cdot \varepsilon_{\rm t} / \varepsilon_{\rm c0}) \tag{5}$$

where *K* is a coefficient related to the roughness and diameter of the bars, which can be assumed equal to 0.1 for ribbed bars of medium diameter; f_c is the peak value of the compression strength corresponding to the strain ε_{c0} , which can be calculated as:

$$\varepsilon_{\rm c0} = 0.0017 + 0.0010 \cdot (f_{\rm cm/70})$$
 (6)

being $f_{\rm cm} = f_{\rm c} + 8$ (MPa) the concrete average strength. $\varepsilon_{\rm t}$ represents the swelling transverse deformation of the section, which can be calculated as:

$$\varepsilon_{\rm t} = n_{\rm bars} \cdot w/b_{\rm i}$$
 (7)

where b_i is the width of the considered section part, w is the average slot opening for each bar and n_{bars} is the number of bars present in b_i .

3 | THE CASE STUDY

To better understand the effect of pitting corrosion degradation as a function of the corrosive state on the structural robustness of bridges, a case study is herein examined.

The SS 115 road, which connects Trapani with Syracuse passing through Agrigento, crosses the Cassibile river near the municipality with a reinforced concrete tied arch bridge with eliminated thrustes (Figure 4a,b).

This artifact was built in 1930 by the Ferrobeton enterprise. This bridge static scheme was largely used for RC constructions in the pre-war period for river crossings in flat areas, where there is a limited height difference between the roadway and the substructures.

The bridge type with eliminated thrust (tied arch type) under study is made of a deck sustained by a couple of overhanging arches through tie-beams. The bridge has a span with length (L) of about 30.00 m, with a rise (m) of 6.00 m and a hydraulic franc (f) of 5.00 m; the pitch (p)between arches is 8.30 m, while the roadway width (w) is 7.50 m. Therefore, it has a ratio between rise and span equal to 1/5, which represents a typical average value for bridges with eliminated thrust.9 The superstructure rests on rc piles. The deck consists of a 15 cm thick slab armed with smooth steel bars and is supported by a sequence of beams, which have rectangular cross-section with height of 0.85 m and base of 0.25 m and are alternatively sustained by tiebeams. These beams, having pitch of 1.40 m, have a slightly tapered section at their ends, which are connected to the edge longitudinal beams. Such latter members, fulfilling the task of thrust bearing, also have a rectangular section with a height of 0.85 m and a base equal to 0.50 m. The arches are connected transversely by two 0.25×0.80 m beams having the bracing function of the structure. The tie-beams, 10 for each arch, are placed with an interaxis of 2.86 m and have a 0.36×0.30 m rectangular cross-section. The road is completed with an original massif and a pavement package that, due to the succession of numerous stretches of bituminous conglomerate, has reached a thickness varying between 0.16 and 0.19 m.

Table 2 shows the main geometrical features of structural elements, the number and type of reinforcement bars and the physical-mechanical properties of the bridge materials.

The bridge over the Cassibile river had a recent temporary closure, prudently adopted following the results of a preliminary investigations campaign aimed at assessing its safety conditions. In fact, considering the significant importance of the bridge within the road system of that zone, the Managing Body decided to deepen the study to better define the bridge service capacity. In the following the real state of the structure and the related degradation conditions are presented. From the bridge observation, it is apparent that most of the structural elements show an advanced state of degradation, which is manifested by the disintegration or detachment of the concrete cover (Figure 5). In fact, the bridge surfaces showing cover spalling with bars exposed to environmental actions are very extensive. Longitudinal reinforcing bars with diameter of 20 mm do not yet show worrying signs of section reduction, while stirrups are strongly affected by corrosion. The degradation is due to a set of causes, such as the high permeability of the concrete, the aggressive environmental conditions aging on the structure and a prolonged leaching of the bridge lateral and intradossal surfaces due to rainwater coming from the road. Much more information on the health state of the bridge are available in Reference 9.

FIGURE 6 FEM model of the bridge with loads in the middle of the deck (a) and degraded structural models: (b) deterioration scenario I with corrosion of tie-beams ($x_{corr} = 1$ and R = 3); (c) deterioration scenario II with corrosion of deck beams ($x_{corr} = 1$ and R = 3); (d) deterioration scenario III with corrosion of deck beams and lateral arches ($x_{corr} = 1$ and R = 3).

17517648, 2023, 4, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/suco.202200374 by Cochraneltalia, Wiley Online Library on [16/04/2025]. See the Terms and Conditions (https://on

conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Signs of a cortical healing operation are detected, but they are considered as inadequate, as shown in the above photographic documentation. The reasons of this insuccess are due to the inadequacy of the mechanical characteristics of the filler material, too rigid compared to the base material and, probably, to the inadequate support preparation before the intervention.

From in situ survey, it is not possible to detect the bridge support types. Therefore, in the numerical analysis reference is made to the construction technique of the time, which provided for this type of structures external constraints with a hinge on one side and a sliding support on the other side.¹⁰

4 | ANALYSIS METHODOLOGY AND FEM MODELING

The robustness evaluation of the bridge, which is done through push-down analysis based on traffic loads applied to both the original model and that damaged by pitting corrosion of longitudinal reinforcements, is made through the following steps:

 Assessment stage of the influence of the mobile loads defined as loading scheme n.1 according to the Italian standard code NTC 2018¹¹; 2. Evaluation phase considering both different degradation scenarios and position of the mobile loads in the loading scheme n.1 as detrimental issues.

The considered degradation scenarios foresee the presence of corrosion on the following structural elements:

- Tie-beams connecting lateral arches with deck side beams;
- Longitudinal and transverse beams of the reinforced concrete deck;
- · Reinforced concrete deck and lateral arches.

The corrosion of the structural elements foreseen by the hypothesized scenarios is based on both a corrosion depth $x_{corr} = 1.00$ mm and a pitting factor $R = 3.^{12}$ About the distribution of corroded reinforcements of structural elements, the following hypotheses are made:

- Main longitudinal beams and connecting transverse beams: corrosion of lower longitudinal reinforcements and intermediate bars;
- Tie-beams: corrosion of all longitudinal reinforcement bars;
- Side arches: corrosion of the lower, upper and intermediate longitudinal reinforcements.

FIGURE 7 Damage state of the real configuration of the bridge.

<u>fib 4511</u>

From the analyses carried out considering the above assumptions, it is possible to identify the critical position of the load minimizing the robustness indicator.

Finally, on this configuration of loads in critical position, for all the hypothesized scenarios, an evaluation of the robustness index as a function of the time, that means by changing the x_{corr} corrosion depth from 0.50 to 3.00 mm (R = 3), is done.

Operatively, after the creation of the bridge FEM model (Figure 6a), to define its ultimate bearing capacity and the related robustness index, reference is made to non-linear models with three embedded corrosion degradation models (Figure 6b–d), in which a non-linear static push-down analysis is performed under displacement control by modifying the control node with the position of the mobile load. This analysis procedure is carried out by the following steps:

FIGURE 8 Damage state of the degraded configuration of the bridge (a) and details on both the failure of bars and the amount of deteriorated concrete portions of tie-beams (b).

- Apply to the FEM model with distributed plasticity the distributions of traffic loads for each combination of the scheme n.1;
- Perform non-linear static analyses to determine the multiplier of collapse loads according to the loading combination reported in Equation (8)¹¹:

$$S_{\rm d} = \gamma_{\rm G} G_{\rm K} + \lambda \left(\gamma_{\rm Q} Q_{\rm 1K} \right) = R_{\rm d} \left(f_{\rm K\gamma/FC} \right) \tag{8}$$

• Calculate the minimum value of collapse load multipliers $l_{\rm MIN}$ as the distribution of loads from road traffic

changes. This identifies the robustness index $I_{\rm R}$ of the bridge;

- Verify the bridge robustness, which is acceptable if $l_{\rm MIN}=I_{\rm R}\geq 1.$

5 | ANALYSIS RESULTS

Results of the carried-out push-down analyses are expressed under form of both the damage state of structural elements and the overall behavior of the intact and damaged bridge under increasing loading. In particular,

FIGURE 9 Variation of the robustness index versus (a) the position of the mobile loads and (b) the loading scenario and the corrosion depth ($x_{corr} = 0.5/3.0 \text{ mm}$).

the trend of the robustness index is reported as a function:

- of the degradation scenario, in order to identify, among the different loading positions considered, the critical one and the severity degree of the scenario in terms of robustness loss with respect to the intact bridge;
- of the time, that means with x_{corr} varying from 0.5 to 3.0 mm, under the degradation scenarios by considering the critical position of the mobile loads.

The damage state of the bridge in the actual configuration is plotted in Figure 7, where it is apparent that the tensile failure of reinforcement beams of both deck longitudinal beams and transverse beam is noticed. On the other hand, the damage state of tie-beams (scenario I) is characterized by the tensile failure of their reinforcement bars and the deck collapse, as shown in Figure 8a. Moreover, in Figure 8b the point of the curve when bars fail is shown and the degraded concrete parts are highlighted in the fiber model of the VSQNEXT calculation code, which is an applicative program of the FATANEXT NL software. In Figure 9a, the robustness index of both the original and degraded bridge is plotted as a function of the mobile loads position. The results show that the degraded bridge has an index about 64% than that of the original state bridge. In Figure 9b, the variation of the robustness index versus both the scenario variation and the considered corrosion level (x_{corr} from 0.5 to 3.0 mm) is plotted.

6 | CONCLUSIONS

The research activities performed on the inspected bridge have led toward the following conclusions:

- The minimum robustness index, which is strongly variable with the position of mobile loads, was determined considering the traffic load critical position, defined as a function of both the scenario and the extent of degradation (corrosion depth between 0.5 and 3.0 mm);
- The critical scenario was attained due to the tensile failure of corroded tie-beams, which induce the structural collapse with a reduction of the robustness index of about 50%–70%;
- The tie-beams played a fundamental role, since they gave to the bridge the right degree of redundancy, as well as the proper connection between the deck and the main arches to have a static scheme with eliminated thrust. When they prematurely collapsed, the arches and the deck were not able to redistribute the

stresses absorbed by the vertical elements, so that the sudden collapse of the bridge was attained.

ACKNOWLEDGMENTS

The authors would like to acknowledge STACEC Srl company for the free supply of FATANEXT NL calculation code used for the analyses of the bridge herein presented.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Antonio Formisano D https://orcid.org/0000-0003-3592-4011

REFERENCES

- 1. Lo Bue F. Analysis and study of degradation effects induced by corrosion on rc structures (in Italian). Master thesis, University of Turin, Turin, Italy. 2018.
- Rodriguez J, Ortega LM, Casal J. Load carrying capacity of concrete structures with corroded reinforcement. Construct Build Mater. 1997;11(4):239–48.
- Val DV, Stewart MG, Melchers RE. Effect of reinforce corrosion on reliability of highway bridges. Eng Struct. 1998;20(11): 1010–9.
- Stewart MG. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effects on structural reliability of corroding RC beams. Struct Saf. 2009;31: 19–30.
- DuraCrete—Final technical report. Probabilistic performance based durability design of concrete structures, document BE95-1347/R17, European Brite-EuRam Programme, CUR, The Netherlands; 2000.
- Du YG, Clark LA, Chan AHC. Effect of corrosion on ductility of reinforcing bars. Mag Concr Res. 2005;57(7):407–19.
- Vergani M. Modelling of degradation of rc structures subjected to corrosion (in Italian). Master thesis, University of Milan, Milan, Italy. 2010.
- Coronelli D, Gambarova P. Structural assessment of corroded reinforced concrete beams: modelling guidelines. ASCE J Struct Eng. 2004;130:1214–24.
- Lo Giudice E, Di Marco GL, Gallo M, Mentione R. The bridge over the river Cassibile: a structure in r/c Bowstring scheme dating 1930. CTE Italian congress, October 27–28, Rome, Italy; 2016.
- 10. Santarella L, Miozzi E. In: Hoepli U, editor. Italian reinforced concrete bridges (in Italian). Milan, Italy: Ulrico Hoepli; 1948.
- 11. Ministry of Infrastructures and Transportations. Ministerial Decree 17/01/2018 "Upgrading of Technical Codes for Constructions" (in Italian). Official Gazette of the Italian Republic n. 42 emanated on 20/02/2018, Rome, Italy. 2018.
- 12. Felitti M, Oliveto F. In: Maggioli, editor. Evaluation of robustness into structural and geotechnical systems (in Italian). Santarcangelo di Romagna (RN), Italy: Maggioli; 2021.

AUTHOR BIOGRAPHIES

Antonio Formisano Department of Structures for Engineering and Architecture University of Naples Federico II Naples, Italy

Lorenzo Mendicino Stacec srl Bovalino (RC), Italy

Matteo Felitti Engineering & Concrete Consulting Vietri di Potenza (PZ), Italy

Francesco Oliveto Freelance Engineer Viggianello (PZ), Italy **How to cite this article:** Formisano A, Felitti M, Oliveto F, Mendicino L. The robustness of reinforced concrete tied arch bridges: A case study. Structural Concrete. 2023;24(4):4504–14. <u>https://</u> <u>doi.org/10.1002/suco.202200374</u>