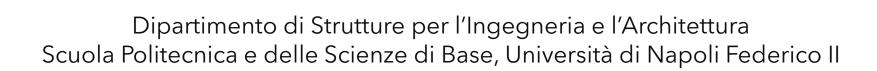


Seminario


Interventi di rinforzo strutturale con sistemi FRP, FRCM e CRM, le certificazioni CVT e le nuove certificazioni ETA CE

11 Novembre 2025 Grand Hotel Vanvitelli, Viale Carlo III - 81100 Caserta

IMPIEGO DEI MATERIALI COMPOSITI NEL CONSOLIDAMENTO STRUTTURALE: EVOLUZIONE STORICA E SVILUPPI FUTURI

Prof. Ing. Antonio Formisano

INDICE

INTRODUZIONE

PRINCIPALI VULNERABILITA' STRUTTURALI

- Edifici in muratura
- > Edifici in calcestruzzo armato

TECNICHE DI RETROFIT STRUTTURALE

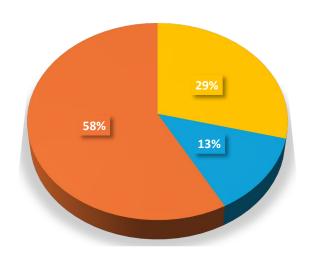
I MATERIALI COMPOSITI

- > Definizione dei materiali compositi
- > Evoluzione storica dei materiali compositi

CONSOLIDAMENTO STRUTTURALE

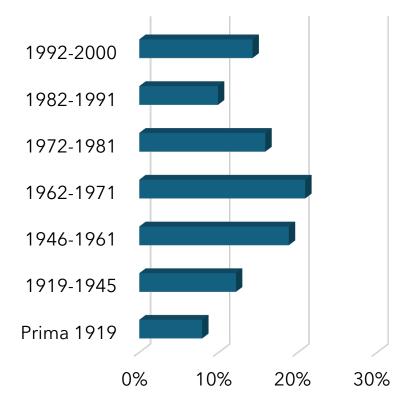
- > Sistemi FRP e FRCM per il consolidamento di strutture in muratura
- > Sistemi FRP per il consolidamento di strutture in c.a.

TENDENZE E SVILUPPI FUTURI


> L'uso di fibre naturali per sistemi compositi

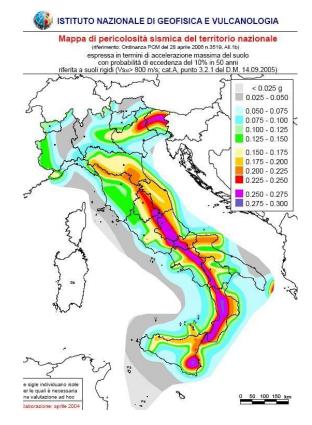
CONCLUSIONI

TIPOLOGIE STRUTTURALI


Il 15° Censimento ISTAT della popolazione e delle abitazioni individua 3 tipologie costruttive che caratterizzano il patrimonio edilizio esistente:

- Muratura portante
- Calcestruzzo armato
- Altri materiali (Acciaio, legno)

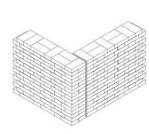
EPOCA DI COSTRUZIONE

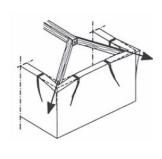

Gran parte degli edifici esistenti è stata realizzata prima degli anni '80 del XX secolo

1974 → prima normativa sismica applicata su scala nazionale alle zone sismiche 2003 → estensione della classificazione sismica a tutto il territorio nazionale

CRITERI PROGETTAZIONE

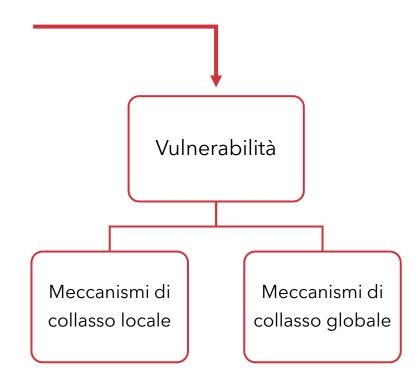
La maggior parte di edifici è stata progettata per soli carichi verticali, senza considerare le azioni sismiche

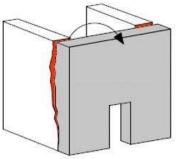

Una larga percentuale degli edifici esistenti si trova nelle zone a sismicità più elevata (dorsale appenninica)


PRINCIPALI VULNERABILITÀ STRUTTURALI

EDIFICI IN MURATURA

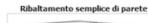
- ☐ Scarsa qualità muraria
- ☐ Paramenti murari di elevato spessore non connessi
- ☐ Scarsa attenzione alla realizzazione di dettagli costruttivi
- ☐ Assenza di ammorsamenti
- Pochi incatenamenti
- Appoggi travi insufficienti
- ☐ Carichi elevati
- ☐ Spinte di volte ed archi non contrastate
- ☐ Coperture spingenti




Assenza di comportamento scatolare

L'edificio non è in grado di comportarsi come un unico insieme di sistemi strutturali orizzontali e verticali, collegati tra loro, capaci di sopportare le sollecitazioni provenienti da eventi sismici.

EDIFICI IN MURATURA


MECCANISMI LOCALI

Meccanismi fuori piano - I modo

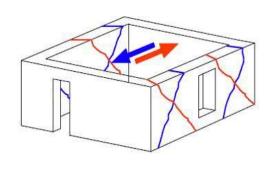
Meccanismi di primo modo
Cinematismi fuori piano di singole
pareti o di porzioni di struttura.
Fenomeni di ribaltamento e

flessione che portano a collasso la struttura per perdita di equilibrio.

Flessione verticale

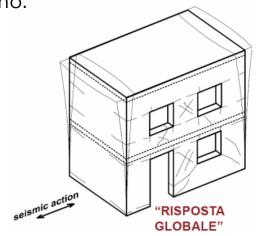
Ribaltamento composto di parete

Ribaltamento del cantonale


Flessione orizzontale di parete

Sfondamento del timpano

MECCANISMI GLOBALI



Meccanismi nel piano - Il modo

Il buon ammorsamento

delle pareti e l'efficace vincolo tra pareti e orizzontamenti scongiurano fenomeni di ribaltamento e flessione fuori del piano. Meccanismi di secondo modo Risposta della parete nel proprio piano, con tipici danneggiamenti per taglio e presso-flessione.

Tali cinematismi si attivano in strutture in grado di sviluppare una risposta globale alla sollecitazione sismica ovvero quando sono impediti i meccanismi di collasso locali fuori dal piano.

PRINCIPALI VULNERABILITÀ STRUTTURALI

EDIFICI IN CALCESTRUZZO ARMATO

MECCANISMI LOCALI

Dipendono dal singolo elemento e possono non inficiare il comportamento globale se interessano solo una piccola aliquota di elementi

Meccanismi duttili = tipicamente flessionali **Meccanismi fragili** = tipicamente a taglio

- Eccessivo interasse tra le staffe
- Ancoraggio insufficiente delle barre longitudinali o delle staffe
- Presenza di barre di armatura lisce
- Calcestruzzi scadenti
- Assenza o insufficienza di armatura trasversale nel nodo
- Influenza di elementi non strutturali: tamponature

MECCANISMI GLOBALI

Interessano la struttura nel suo complesso e inficiano la resistenza di tutta la struttura, pur non coinvolgendo necessariamente tutti gli elementi

Meccanismi duttili = trave debole - pilastro forte **Meccanismi fragili** = trave forte - pilastro debole

- Eccessive variazioni di rigidezza e resistenza in elevazione
- Irregolarità in pianta
- Presenza di elementi strutturali rigidi eccentrici
- Assenza di telai nelle due direzioni principali

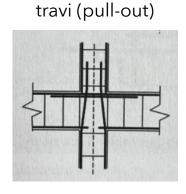
EDIFICI IN CALCESTRUZZO ARMATO

PILASTRI TRAVI

Compressione

Pressoflessione

Taglio

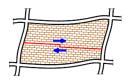

Flessione

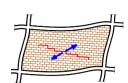
Taglio

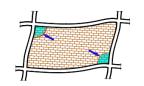
Interruzione armature longitudinali inferiori delle

NODI

Assenza o insufficienza di staffe

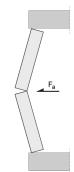



Rottura fragile



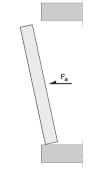
Instabilità barre

TAMPONATURE



Nel piano

Scorrimento orizzontale


Trazione diagonale

Schiacciamento

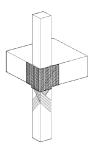
Fuori piano

Flessione verticale

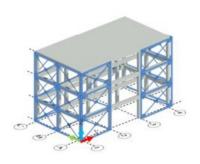
Ribaltamento

INTERVENTI DI TIPO LOCALE

- o Inserimento di tiranti e/o catene
- Scuci-cuci
- Iniezioni consolidanti
- Rinforzi con sistemi FRP (Fibro-rinforzati a matrice polimerica)
- Rinforzi con malte fibro-rinforzate (FRCM)
- Metodo CAM (Cucitura Attiva dei Manufatti)


- o Incamiciatura in c.a. o in acciaio (Calastrellature)
- o Esoscheletri esterni in acciaio
- Rinforzi con sistemi FRP (Fibro-rinforzati a matrice polimerica)
- Rinforzi con malte fibro-rinforzate (FRCM)

INTERVENTI DI TIPO GLOBALE


- o Riduzione delle irregolarità dell'edificio
- o Introduzioni di nuovi elementi strutturali
- Riduzione della domanda

DEFINIZIONE DEI MATERIALI COMPOSITI

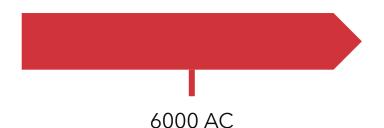
Materiali eterogenei costituiti da due o più fasi con proprietà fisiche differenti, le cui proprietà sono migliori rispetto a quelle delle fasi che li costituiscono.

MATRICE

Fase continua omogenea che ha il compito di racchiudere il rinforzo garantendo la coesione del materiale composito. Può essere organica o inorganica.

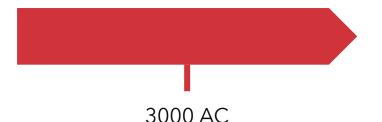
Fase dispersa che ha il compito di assicurare rigidezza e resistenza meccanica, assorbendo la maggior parte del carico esterno.

A seconda del tipo di rinforzo, i materiali compositi si suddividono in:


- Compositi particellari
- Compositi rinforzati con fibre
- Compositi strutturati

I compositi fibrorinforzati sono a loro volta classificati in base alla disposizione delle fibre al loro interno:

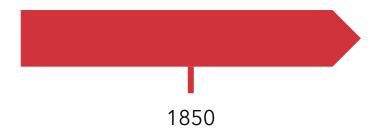
- Compositi a fibre continue (o lunghe)
- Compositi a fibre discontinue (o corte) allineate tra loro
- Compositi a fibre discontinue (o corte) disposte in maniera casuale


EVOLUZIONE STORICA DEI MATERIALI COMPOSITI

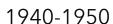
La tecnologia del rinforzo di materiali mediante l'uso di fibre risale a tempi molto antichi con diverse testimonianze.

Il sistema wattle-and-doub (legno e argilla) è uno dei più antichi. Pareti realizzate con intreccio di rami o canne + rivestimento con impasto di argilla, fango e paglia.

Gli Egizi da un impasto di paglia ed argilla hanno creato mattoni da costruzione più resistenti di quelli composti di solo fango.



I Maya inserirono fibre nelle loro ceramiche per prevenire la fessurazione quando l'argilla veniva rapidamente essiccata al sole.


- Ancora oggi ci sono vaste regioni del mondo in cui si usano tecniche del tutto simili; in genere si tratta di aree povere in Africa, Sudamerica ed Asia.
- > Anche nei paesi più ricchi si assiste ad una riscoperta di questi sistemi grazie al filone della bioarchitettura.

EVOLUZIONE STORICA DEI MATERIALI COMPOSITI

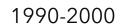
- Introduzione del cemento armato nel settore delle costruzioni.
- Realizzazione della macchina per la produzione di cementoamianto.

Primi usi di plastiche rinforzate (es. costruzione barca in vetroresina) successivamente impiegate in campo aeronautico e missilistico.

Introduzione delle prime fibre di carbonio e boro ad alta resistenza in ambito aeronautico.

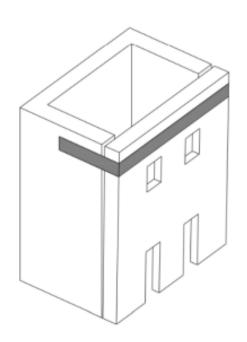
EVOLUZIONE STORICA DEI MATERIALI COMPOSITI

- Compositi con matrici metalliche in boro/alluminio introdotti in campo aeronautico, automobilistico e biomedico.
- Nel 1973 la Dupont sviluppa le fibre aramidiche



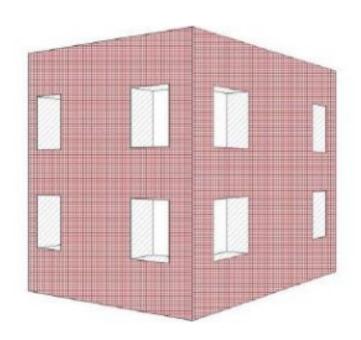
Diffusione dell'impiego di FRC e FRP anche in ambito edile per il retrofit di edifici esistenti.

- Diffusione in ambito edile anche di FRCM e CRM.
- Dagli anni 2000 si è avviata anche la ricerca sui nanocompositi.

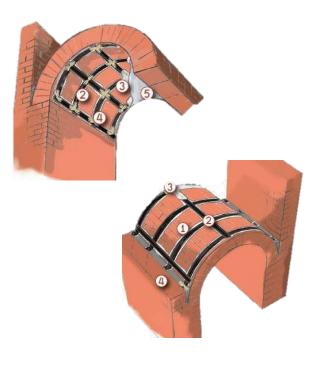

MATERIALI COMPOSITI MODERNI PER IL CONSOLIDAMENTO STRUTTURALE

Sistema	Matrice	Rinforzo	
FRP Fiber Reinforced Polymer	Polimerica di natura organica	Fibra lunga e continua Carbonio, Vetro, Aramide, Acciaio, PBO	
FRCM Fiber Reinforced Cementitious Matrix sp = 1-2 cm	Inorganica (malta di calce o cementizia)	Reti di rinforzo in fibra Carbonio, Vetro, Basalto, Acciaio, PBO	
CRM Composite Reinforced Mortar sp = 3-5 cm	Inorganica (malta di calce o cementizia)	Reti di rinforzo in fibra Vetro	

SISTEMI FRP E FRCM PER IL CONSOLIDAMENTO DI STRUTTURE IN MURATURA


PANNELLI IN MURATURA - FRP

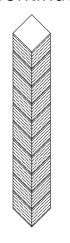
 Rinforzo dei pannelli in muratura con fasce sommitali per contrastare ribaltamenti e fenomeni di collasso locali


PANNELLI IN MURATURA - FRCM

 Rinforzo a pressoflessione e a taglio dei pannelli in muratura con reti in FRCM

VOLTE ED ARCHI

 Rinforzo con FRP o FRCM all'estradosso o all'intradosso della struttura

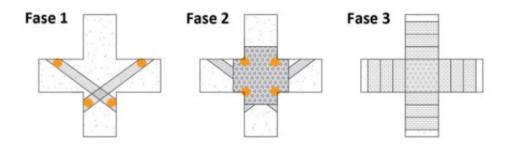

SISTEMI FRP PER IL CONSOLIDAMENTO DI STRUTTURE IN C.A.

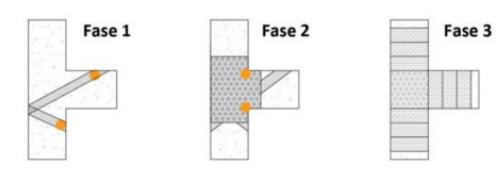
PILASTRI

Confinamento e rinforzo a taglio

Continuo

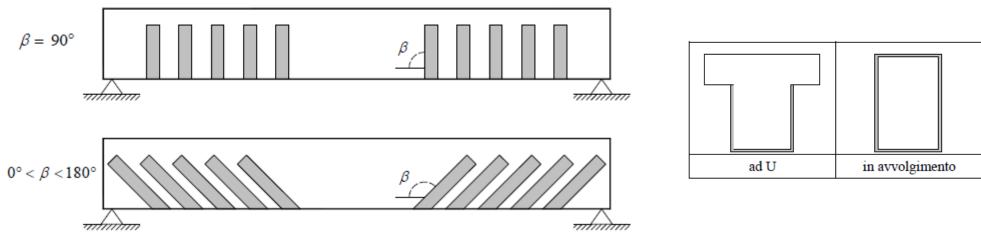
Discontinuo


• Rinforzo a pressoflessione



NODI TRAVE - PILASTRO

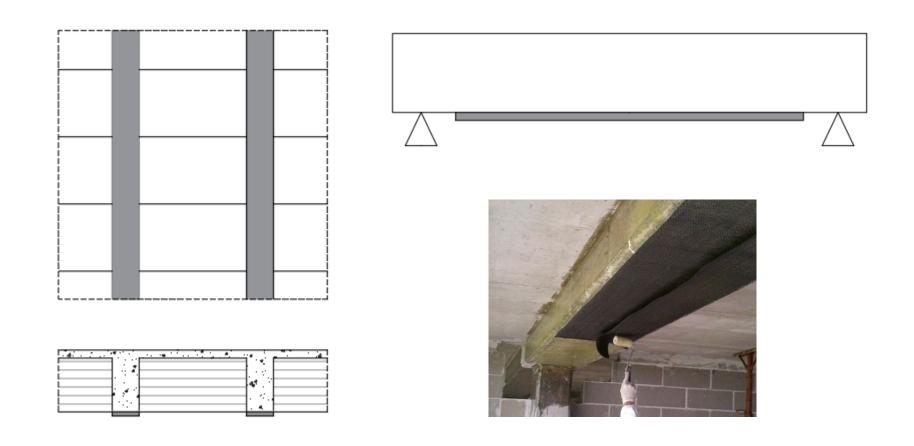
Nodo perimetrale

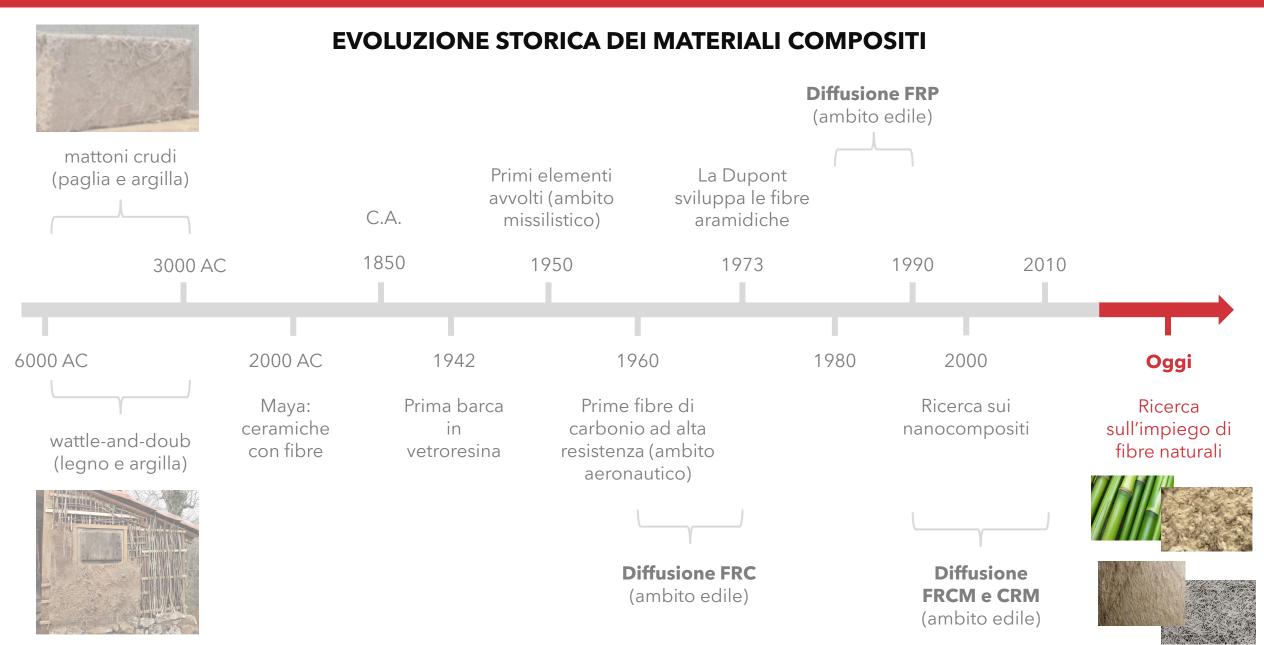

Nodo d'angolo

SISTEMI FRP PER IL CONSOLIDAMENTO DI STRUTTURE IN C.A.

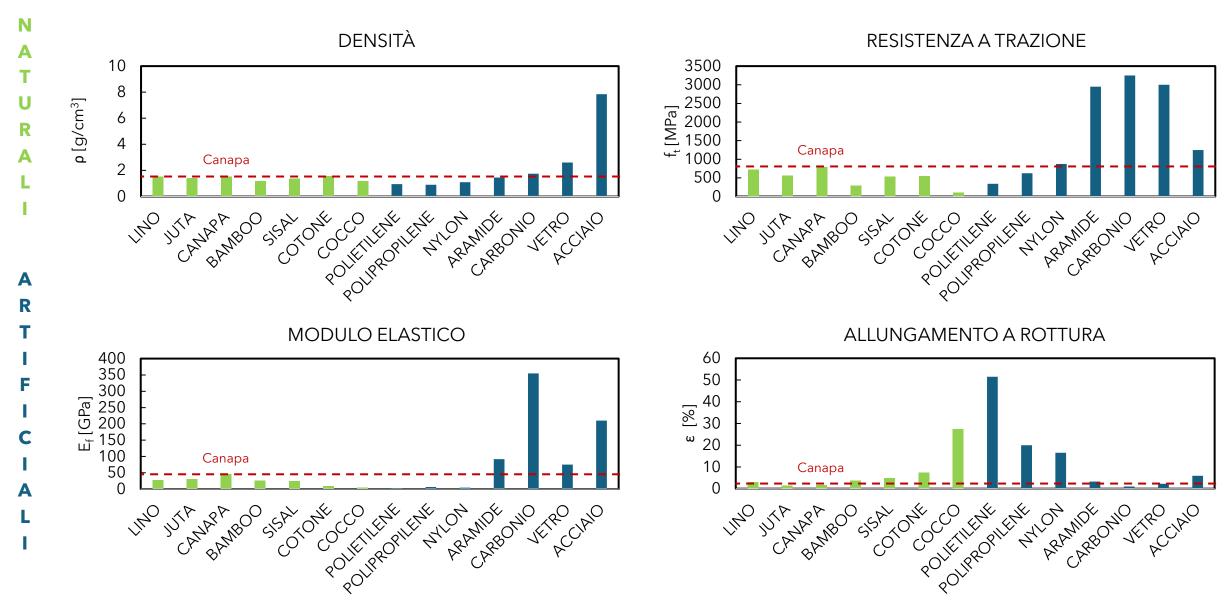
TRAVI

• Rinforzo a taglio





SISTEMI FRP PER IL CONSOLIDAMENTO DI STRUTTURE IN C.A.


TRAVI, SOLAI E SOLETTE

Rinforzo a flessione

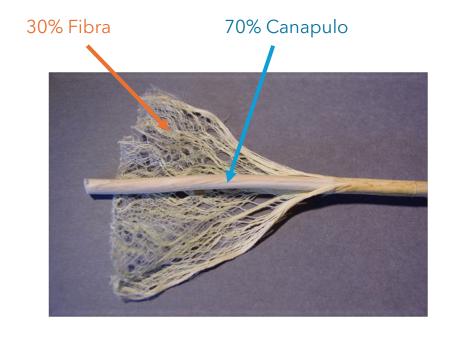
IMPIEGO DI FIBRE NATURALI PER SISTEMI COMPOSITI

IMPIEGO DI FIBRE NATURALI PER SISTEMI COMPOSITI

CANNABIS SATIVA CANAPA INDUSTRIALE

CANNABIS INDICA

CANNABIS RUDERALIS


FOGLIE: In ciascun nodo del fusto, opposte, picciolate palmate con segmenti lanceolati e acuminati

• SEMI: frutto secco (achenio) di forma ovoidale con lunghezza di 3-5 mm

STELO: ha un'altezza massima di circa 4 metri ed è costituito da fibra e canapulo

BENEFICI AMBIENTALI

- Si adatta a tutti i terreni: coltivazione dinamica che si adegua al cambiamento stagionale
- Non ha bisogno di insetticidi o pesticidi: non è soggetta all'attacco di insetti e roditori
- **È carbon-negative**: un ettaro di canapa assorbe una quantità di anidride carbonica 4 volte maggiore di una foresta della stessa area

IMPIEGO DI FIBRE NATURALI PER SISTEMI COMPOSITI

Caratterizzazione meccanica di sistemi FRCM in fibra di canapa

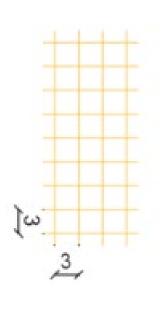
- Materiali impiegati
- > Prove preliminari sulle reti
- > Prove di trazione diretta su reti
- Prove di compressione sulla matrice
- Prove di trazione diretta su provini FRCM

Prove di compressione su pannelli in muratura rinforzati con FRCM in fibra di canapa

- Materiali impiegati
- Prova a trazione su trecce di canapa
- Preparazione dei campioni
- Prove di compressione

Casi studio di edifici rinforzati con sistemi compositi in fibra di canapa

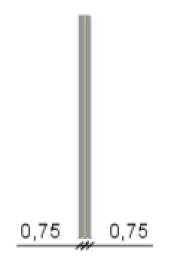

- Analisi pushover di un edificio in c.a. rinforzato con FRP in fibra di canapa
- Analisi pushover di un edificio in muratura rinforzato con FRCM in fibra di canapa


CARATTERIZZAZIONE MECCANICA DI SISTEMI FRCM IN FIBRA DI CANAPA

MATERIALI IMPIEGATI

COMPONENTE FIBROSO

- Rete in fibra di canapa
- Maglia 3 cm x 3 cm


MATRICE INORGANICA

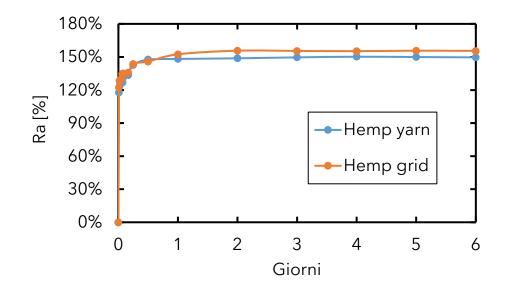
- NHL 3,5 (EN 459-1)
- **M15** (EN 998-2)

SISTEMA COMPOSITO

Rete inserita tra due strati di malta di calce

CARATTERIZZAZIONE MECCANICA DI SISTEMI FRCM IN FIBRA DI CANAPA

CAPACITÀ DI ASSORBIMENTO D'ACQUA

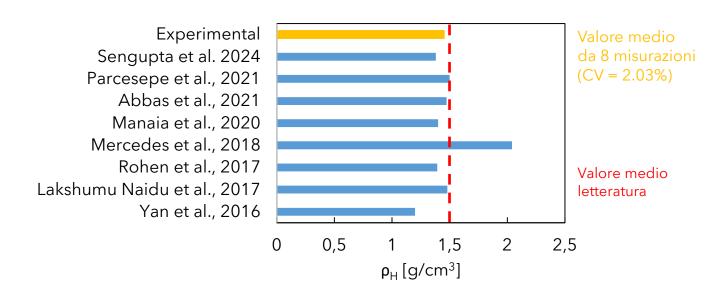

DENSITÀ

Peso iniziale del campione secco W_i

Immersione in acqua

Peso finale del campione saturo W_f

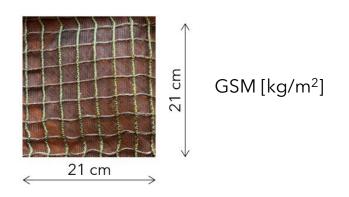
$$R_a = \frac{W_f - W_i}{W_i} \cdot 100 \, [\%]$$



Peso secco della rete (W_H)

Calcolo della massa d'acqua spostata dalla rete in un cilindro graduato (m_{DL})

Calcolo volume della rete $V_H = \frac{m_{DL}}{\rho_L}$


Calcolo densità della rete $ho_H = rac{W_H}{V_H} = 1.45~g/cm^3$

CARATTERIZZAZIONE MECCANICA DI SISTEMI FRCM IN FIBRA DI CANAPA

SPESSORE EQUIVALENTE

Calcolo grammatura delle rete

Calcolo spessore equivalente

$$t_{eq} = 1000 \cdot \frac{GSM}{\rho} [mm]$$

Direction	GSM [kg/m ²]	ρ [kg/m³]	t _{eq} [mm]
warp	0.164	1452.7	0.11
weft	0.164	1452.7	0.11

AREA RESISTENTE DEL SINGOLO YARN

Campioni = 9 spezzoni di yarn di lunghezza L = 200 mm

Peso degli spezzoni di yarn (W)

Calcolo area resistente del singolo yarn

$$A_{fy} = 1000 \cdot \frac{W}{L \cdot \rho} \ [mm^2]$$

Valore medio A _{fy}	2.35 mm ²
Deviazione Standard	0.04
Coefficiente di Variazione	1.6%

Area resistente della rete composta da n yarns

$$A_{fy} = n \cdot A_{fy} [mm^2]$$

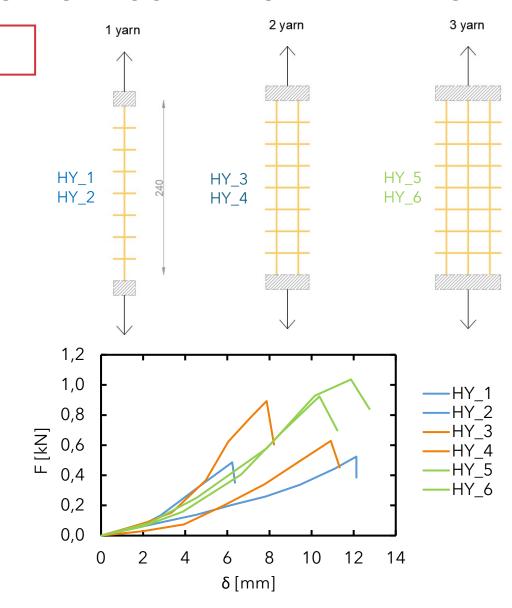
CARATTERIZZAZIONE MECCANICA DI SISTEMI FRCM IN FIBRA DI CANAPA

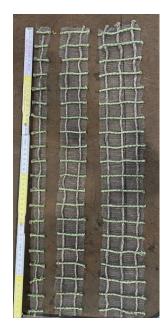
PROVE DI TRAZIONE SU YARNS E RETI

Preparazione dei campioni

Prova a controllo di spostamento 0.5 mm/min

Diagramma forza - spostamento (F- δ)

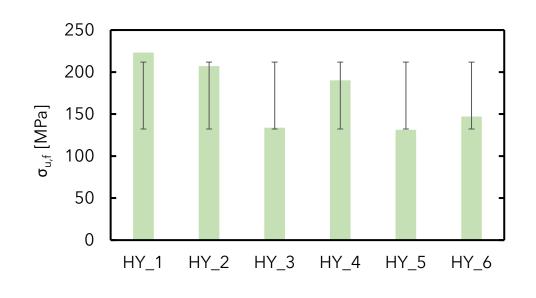

Calcolo resistenza a trazione della rete

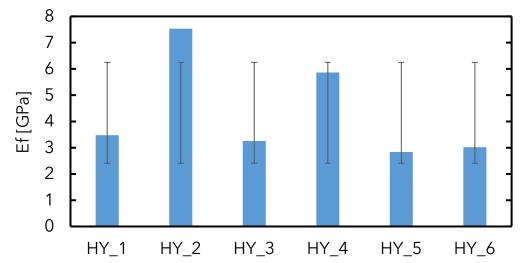

$$\sigma_{u,f} = \frac{F_{max}}{n \cdot A_{fy}}$$

Calcolo modulo elastico a trazione della rete

Modulo secante tra due valori di tensione:

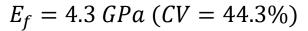
$$\sigma_1 = \frac{F_{max}}{10 \cdot n \cdot A_{fy}} \qquad \sigma_2 = \frac{F_{max}}{2 \cdot n \cdot A_{fy}}$$





CARATTERIZZAZIONE MECCANICA DI SISTEMI FRCM IN FIBRA DI CANAPA

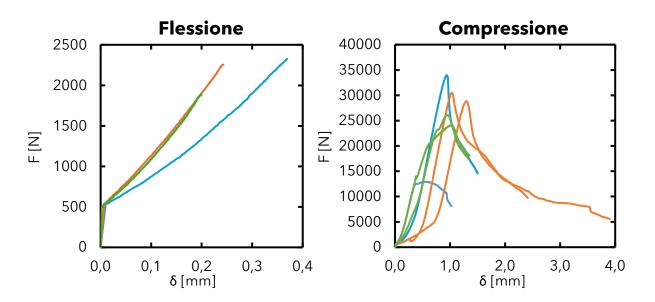
RESISTENZA A TRAZIONE DELLA RETE


MODULO ELASTICO DELLA RETE

$$\sigma_{u,f} = 172.1 \, MPa \, (CV = 23.1\%)$$

CARATTERIZZAZIONE MECCANICA DI SISTEMI FRCM IN FIBRA DI CANAPA

PROVE MECCANICHE SULLA MATRICE


Prove eseguite a 28 giorni di stagionatura

Preparazione di tre provini 40x40x160 mm

Prova a flessione su tre punti su provini 40x40x160 mm

Rettifica provini

Prova di compressione su provini 40x40x40 mm

$f_{c, mean} [MPa]$	17.9			
CV	13.4%			

f _{t, mean} [MPa]	5.1		
CV	10.7%		

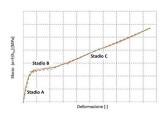
CARATTERIZZAZIONE MECCANICA DI SISTEMI FRCM IN FIBRA DI CANAPA

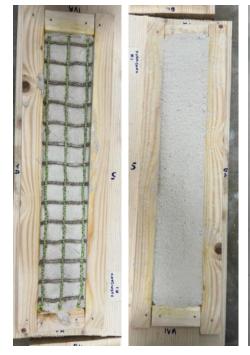
PROVE A TRAZIONE SU PROVINI FRCM

Prove eseguite a 28 giorni di stagionatura

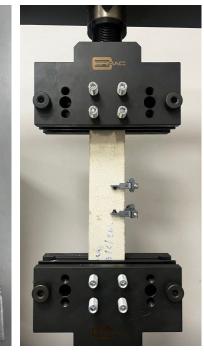
Preparazione dei campioni

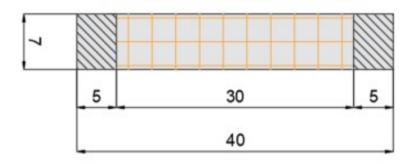
Prova a controllo di spostamento 0.2-0.5 mm/min


Diagramma forza - spostamento (F- δ)


Calcolo resistenza a trazione del sistema FRCM

$$\sigma_u = \frac{F_{max}}{n \cdot A_{fy}}$$


Calcolo deformazione ultima a rottura del sistema FRCM


Calcolo modulo elastico a trazione nello stadio A

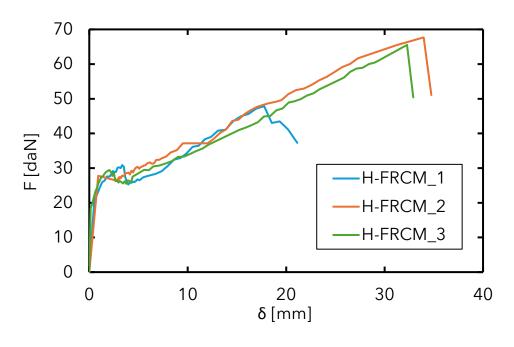
--- rete

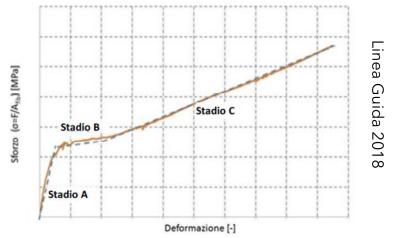
CARATTERIZZAZIONE MECCANICA DI SISTEMI FRCM IN FIBRA DI CANAPA

PROVE A TRAZIONE SU PROVINI FRCM

Media su 3 provini

Valore	σ _u [MPa]	ε _u [%]	E ₁ [GPa]	
Medio	85.7	9.3%	3.55	
CV	18.0%	31.8%	102%	


Media su 2 provini (ID: 2, 3)


Valore	σ _u [MPa]	ε _u [%]	E ₁ [GPa]
Medio	94.6	11%	5.20
CV	2.3%	3.6%	71.9%

PROVE DI COMPRESSIONE SU PANNELLI IN MURATURA RINFORZATI CON FRCM IN FIBRA DI CANAPA

Mattoni pieni

12x25x5.5 mm

 $f_c = 38.15 \text{ MPa}$

Malta per muratura

 $f_c = 18.17 \text{ MPa}$

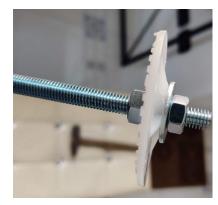
 $f_{+} = 1.44 \text{ MPa}$

Malta di calce

NHL 3.5

M15 $f_c > 15 \text{ MPa}$

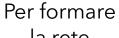
Malta di calce Trecce di canapa


la rete

Assemblaggio rete

Rete 20x20 mm

Ancoraggi passanti



Collegamento del rinforzo sulle due facce

KERA OLL

D = 2 mm

PROVE DI COMPRESSIONE SU PANNELLI IN MURATURA RINFORZATI CON FRCM IN FIBRA DI CANAPA

PROVE A TRAZIONE SULLE TRECCE

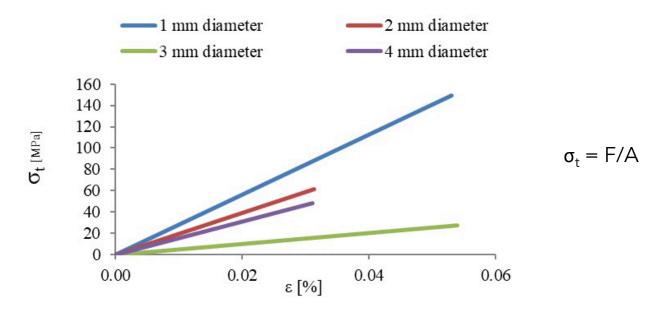
Lunghezza 70 mm

 $(l_0 = 50 \text{ mm})$

Provini:

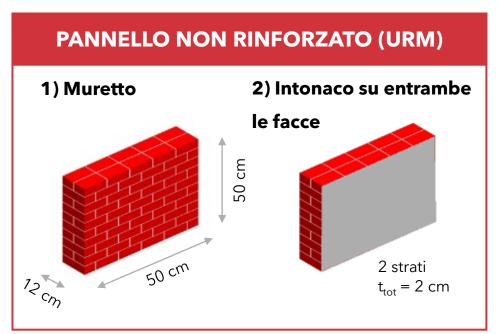
D = 1 mm

D = 2 mm


D = 3 mm

D = 4 mm

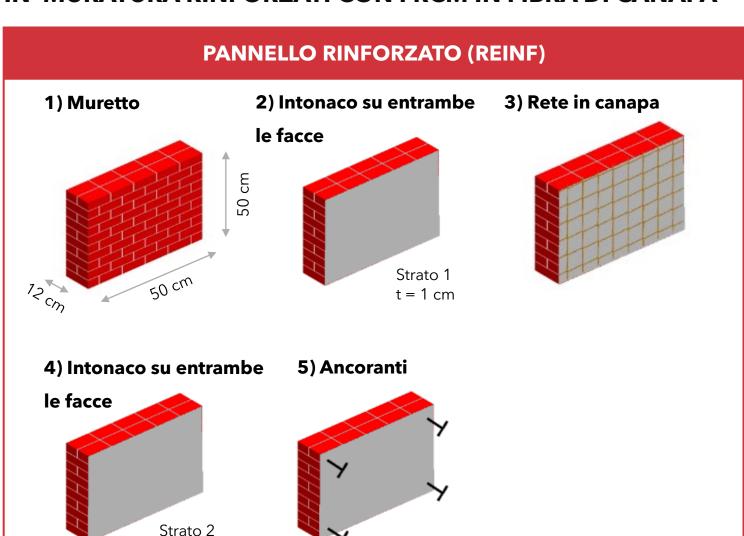
Macchina universale a controllo di spostamento (ASTM C1557)


Il criterio di collasso per ciascun test è la rottura del primo filo della treccia.

La treccia da 2 mm ha una resistenza a trazione media di 62 Mpa

$$D = 2 \text{ mm}$$

 $A = 3.8 \text{ mm}^2$ \longrightarrow $F = 235 \text{ kN}$ \longrightarrow $\sigma_t = 62 \text{ MPa}$

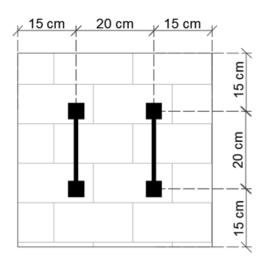

PROVE DI COMPRESSIONE SU PANNELLI IN MURATURA RINFORZATI CON FRCM IN FIBRA DI CANAPA

t = 1 cm

PROVE DI COMPRESSIONE SU PANNELLI IN MURATURA RINFORZATI CON FRCM IN FIBRA DI CANAPA

PROVE A COMPRESSIONE SUI PANNELLI IN MURATURA

REINF

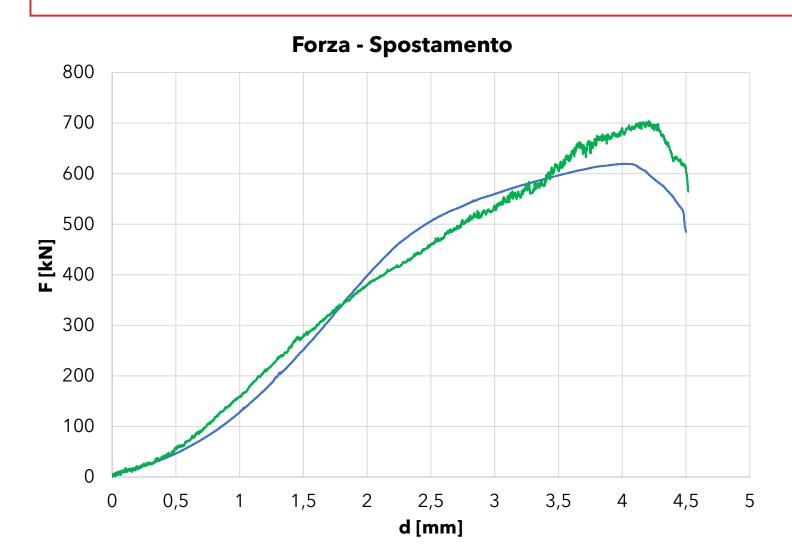


Due strati di malta sono stati applicati per regolarizzare le sezioni a contatto con la macchina di prova.

Malta fibrorinforzata e a ritiro controllato R4 (RN 1504-3)

Per leggere gli spostamenti in direzione del carico sono stati posizionati due trasduttori su ciascuna faccia del pannello

500 kN MTS 810 Macchina Universale


UNI EN 12390-3:2019

Gradiente di carico 50 N/s

 $\sigma = F/A$

PROVE DI COMPRESSIONE SU PANNELLI IN MURATURA RINFORZATI CON FRCM IN FIBRA DI CANAPA

PROVE A COMPRESSIONE SUI PANNELLI IN MURATURA

Rispetto al pannello non rinforzato, i pannello rinforzato ha mostrato:

- Un incremento di forza massima e rigidezza iniziale di circa il 15%
- Un incremento di spostamento al icco di forza di circa il 5%
- ➤ Lo stesso valore di duttilità (2)

PROVE DI COMPRESSIONE SU PANNELLI IN MURATURA RINFORZATI CON FRCM IN FIBRA DI CANAPA

PROVE A COMPRESSIONE SUI PANNELLI IN MURATURA

URM

MODALITÀ DI COLLASSO

- > Espulsione degli strati di intonaco
- > Formazione di lesioni verticali
- Rottura dei mattoni

- Nessuna lesione significativa nei mattoni o nel rinforzo
- > Lesioni capillari diffuse
- Nessuna espulsione di intonaco

EDIFICI ESISTENTI RINFORZATI CON SISTEMI COMPOSITI IN FIBRA DI CANAPA

EDIFICIO IN C.A.

EDIFICIO IN MURATURA

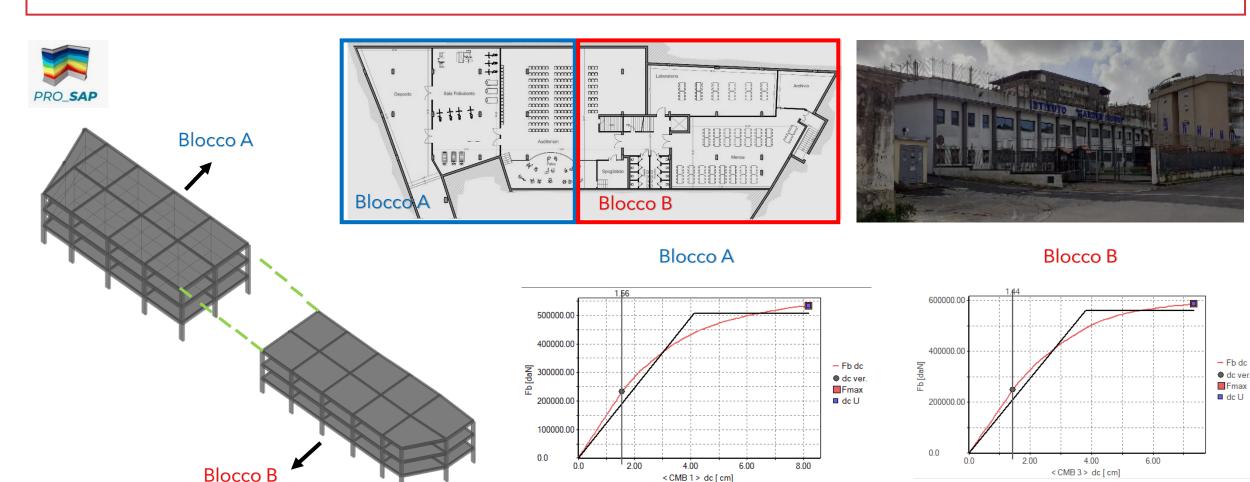
Edificio scolastico

Istituto Paritario Garden House - Marano di Napoli (NA)



Istituto Massaia - San Giorgio a Cremano (NA)

Rinforzo di pilastri mediante FRP in fibra di canapa



Rinforzo di maschi murari mediante FRCM in fibra di <u>canapa</u>

Rinforzo di maschi murari mediante FRP in fibra di canapa

EDIFICI ESISTENTI RINFORZATI CON SISTEMI COMPOSITI IN FIBRA DI CANAPA

EDIFICIO IN C.A.

EDIFICI ESISTENTI RINFORZATI CON SISTEMI COMPOSITI IN FIBRA DI CANAPA

EDIFICIO IN C.A.

Obiettivo: miglioramento sismico (incremento ζ_F di almeno 0.10 e comunque superiore a 0.60 per edifici scolastici)

Blocco A Blocco B Verificato Non verificato

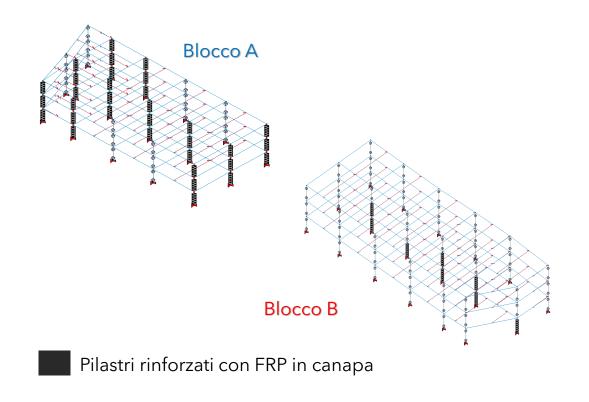
Verifiche SDF per livello di sicurezza target (60%) \longrightarrow Scelta della tipologia di rinforzo per i pilastri non verificati

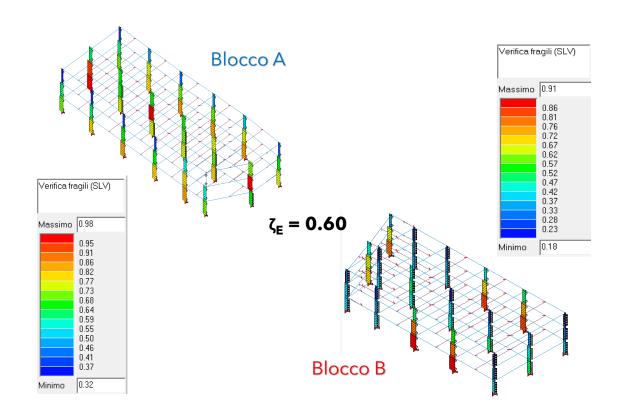
FRP in fibra di canapa

- Tensione a rottura = 136.34 MPa
- Deformazione = 1,77%
- Modulo elastico = 11558.31 MPa (dati provenienti dalla letteratura)

Inserimento caratteristiche del rinforzo nel software di calcolo

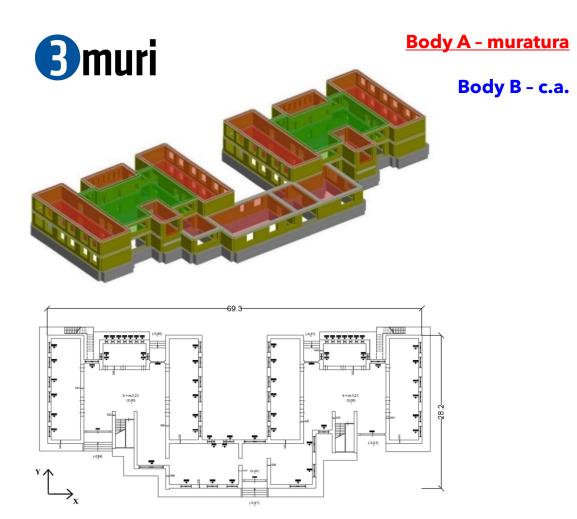
ID	Sigla	Spessore	Е	epsr%	Direzione	Tipo appli	Esposizione	Fibra	eta a	Lunghezza	Larghezza	Passo fasc	r raggio co
11 4	GERMEER	11.111	7 11111111111111	1 1111	ишпъзине	шин	шеша	аши	11731	711111111	7101101	4000 1000	7111111
n. 5	canapa.	0.14	115583.10	1.77	uniassiale	tipo B	interna.	altro	0.75	200.00	200.00	200.00	20.00

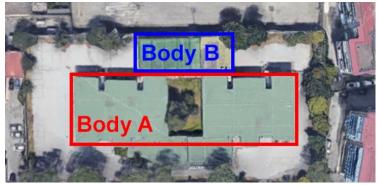

EDIFICI ESISTENTI RINFORZATI CON SISTEMI COMPOSITI IN FIBRA DI CANAPA

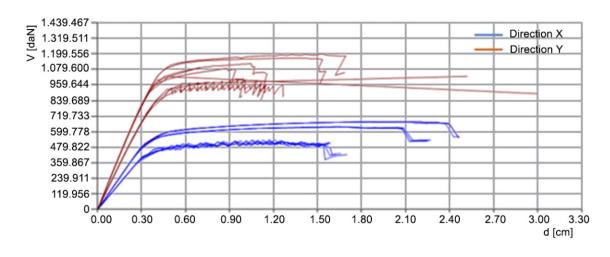

EDIFICIO IN C.A.

Obiettivo: miglioramento sismico (incremento ζ_F di almeno 0.10 e comunque superiore a 0.60 per edifici scolastici)

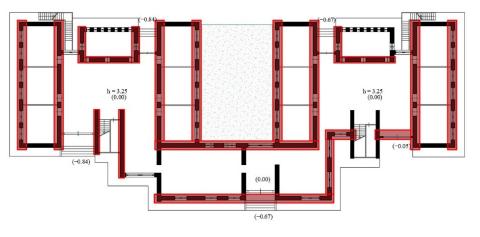
Applicazione del rinforzo ai pilastri non verificati

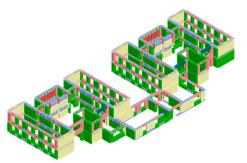

Verifiche SDP per livello di sicurezza target (60%)




EDIFICI ESISTENTI RINFORZATI CON SISTEMI COMPOSITI IN FIBRA DI CANAPA

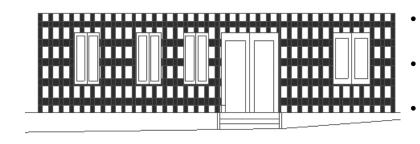
EDIFICIO IN MURATURA

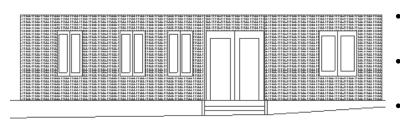

 ζ_E = 0.59 - Classe di rischio sismico C


EDIFICI ESISTENTI RINFORZATI CON SISTEMI COMPOSITI IN FIBRA DI CANAPA

EDIFICIO IN MURATURA

Obiettivo: miglioramento sismico (incremento ζ_F di almeno 0.10 e comunque superiore a 0.60 per edifici scolastici)


Individuazione delle pareti da rinforzare

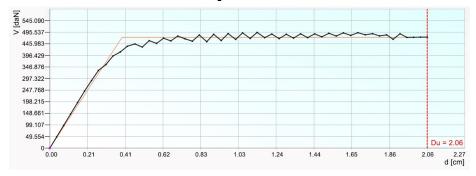

Scelta della tipologia di rinforzo

FRP in fibra di canapa (H-FRP)

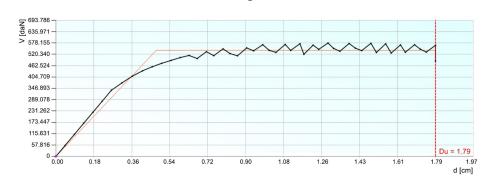
- Resistenza a trazione = 83.5 MPa
- Deformazione ultima = 1.7%
- Modulo elastico = 42290 MPa

FRCM in fibra di canapa (H-FRCM)

- Resistenza a trazione = 71.8 MPa
- Deformazione ultima = 1.8%
- Modulo elastico = 11558 MPa


EDIFICI ESISTENTI RINFORZATI CON SISTEMI COMPOSITI IN FIBRA DI CANAPA

EDIFICIO IN MURATURA


Obiettivo: miglioramento sismico (incremento ζ_F di almeno 0.10 e comunque superiore a 0.60 per edifici scolastici)

Analisi edificio rinforzato

FRP in fibra di canapa (H-FRP)

FRCM in fibra di canapa (H-FRCM)

 $\zeta_E = 0.59 \rightarrow \text{miglioramento sismico (+0.13 rispetto allo SDF)}$

Classe di rischio sismico C → nessuna variazione di classe

Modello	ζ _E dir. X	ζ _E dir. Y
Stato di Fatto	0.59	0.62
Rinforzato con FRP in canapa	0.72	0.86
Rinforzato con FRCM in canapa	0.64	0.71

 $\zeta_E = 0.64 \rightarrow \text{non c'è miglioramento sismico (+0.05 rispetto allo SDF)}$

Classe di rischio sismico C → nessuna variazione di classe

GRAZIE PER LA CORTESE ATTENZIONE

Prof. Ing. Antonio Formisano

Dipartimento di Strutture per l'Ingegneria e l'Architettura Scuola Politecnica e delle Scienze di Base, Università di Napoli Federico II